首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知平面上三条不同直线的方程分别为 l1:ax+2by+3c=0, l2:bx+2cy+3a=0, l3:cx+2ay+3b=0, 试证这三条直线交于一点的充分必要条件为a+b+c=0.
已知平面上三条不同直线的方程分别为 l1:ax+2by+3c=0, l2:bx+2cy+3a=0, l3:cx+2ay+3b=0, 试证这三条直线交于一点的充分必要条件为a+b+c=0.
admin
2016-05-31
120
问题
已知平面上三条不同直线的方程分别为
l
1
:ax+2by+3c=0,
l
2
:bx+2cy+3a=0,
l
3
:cx+2ay+3b=0,
试证这三条直线交于一点的充分必要条件为a+b+c=0.
选项
答案
方法一:必要性: 设三条直线l
1
,l
2
,l
3
交于一点,则其线性方程组为: [*] =3(a+b+c)[(a-b)
2
+(b—c)
2
+(c—a)
2
],但根据题设可知(a-b)
2
+(b-c)
2
+(c-a)
2
≠0,故a+b+c=0. 充分性: 由a+b+c=0,则从必要性的证明中可知,|A|=0,故r(A)<3.由于 [*] 因此方程组(1)有唯一解,即三直线l
1
,l
2
,l
3
交于一点. 方法二:必要性: 设三直线交于一点(x
0
,y
0
),则[*]为Ax=0的非零解,其中 [*] =-3(a+b+c)[(a-b)
2
+(b-c)
2
+(c-a)
2
],但根据题设可知(a-b)
2
+(b-c)2+(c-a)
2
≠0,故 a+b+C=0. 充分性: 考虑线性方程组 [*] 将方程组(2)的三个方程相加,并由a+b+c=0可知,方程组(2)等价于方程组 [*] 故方程组(3)有唯一解,即方程组(2)有唯一解,亦即三直线l
1
,l
2
,l
3
交于一点.
解析
转载请注明原文地址:https://kaotiyun.com/show/aGT4777K
0
考研数学三
相关试题推荐
完备的法律规范体系,是中国特色社会主义法治体系的前提,是法治国家、法治政府、法治社会的制度基础。中国特色社会主义法律体系,是多个法律部门组成的有机统一整体。它包括的法律部门是()。
中国研究人员日前在美国《分子植物》杂志上报告,他们破译了世界三大饮料植物之一茶树的基因组。报告提出,高含量的茶多酚和咖啡因决定了山茶属植物是否适合制茶。该结论回答了为什么只有茶组植物的叶子适合制茶,而茶花、油茶和金花茶等非茶组植物的叶片不适合制茶这一长期悬
建设现代化经济体系是党中央从党和国家事业全局出发,着眼于实现“两个一百年”奋斗目标、顺应中国特色社会主义进入新时代的新要求作出的重大决策部署,既是一个重大理论命题,又是一个重大实践课题。因为形成现代化经济体系()。
俗话说:“靠山吃山,靠水吃水”。生活在平原和海边的人们,决不会以林业为主业,而生活在高原山地的人们,也决不会以航运和捕鱼为主业。由于自然条件的种种差异,美洲大陆和亚洲大陆的种、养业各有特点,形成了不同的发展道路。由美洲和亚洲的发展差异可以看出(
2020年3月26日,美国所谓“2019年台北法案”被签署成法。美方这一行动严重违反一个中国原则和中美三个联合公报规定,严重违背国际法和国际关系基本准则,粗暴干涉中国内政。中方对此表示强烈不满和坚决反对。这表明(社)。
设α1,α2,…,αr(r≤n)是互不相同的数,αi=(1,αi,αi2,…,αin-1)(i=1,2,…,r),问α1,α2,…,αr是否线性相关?
设有向量组α1=(1,3,2,0),α2=(7,0,14,3),α3=(2,-1,0,1),α4=(5,1,6,2),α5=(2,-1,4,1),求:(1)向量组的秩;(2)求此向量组的一个极大线性无关组,并把其余的向量分别用该极大无关组线性表示.
求过点P(1,2,1)及直线和平面Ⅱ:x+2y-z+4=0的交点Q的直线方程.
随机试题
小儿烧伤补液过多,早期出现恶心、呕吐、嗜睡、高热、抽搐,应考虑到患儿可能有:()
患者,女,32岁。小腹及少腹疼痛拒按,有灼热感,伴腰骶疼痛,低热起伏,带下量多,色黄、质稠,溲黄,舌红苔黄腻,脉弦滑。其治法是( )。
患者,女性,50岁。因高血压3年,反复来医院就诊,始终不理解自己为什么会得上高血压,护士给其进行健康教育时,讲解高血压疾病发病因素,不包括的因素是
甲未经乙同意而以乙的名义签发一张商业汇票,汇票上记载的付款人为丙银行。丁取得该汇票后将其背书转让给戊。下列哪一说法是正确的?(2013年试卷三第31题)
碾压混凝土坝施工主要特点有( )。
《义务教育体育与健康课程标准(2011年版)》根据学生的身心发展特征将义务教育阶段学习水平划分为()。
窃贼孙某从太原一古玩店偷走一件价值百万的“唐三彩”四足香炉,又高兴又害怕。被抓后得知是件只值三千元的民国西贝货,竟“高兴”得哭起了鼻子。小偷喜极而泣,文物监管则该乐极生悲,为此反思,为此羞愧。假如文物部门监管严厉,文物和古玩市场运作规范有序,凡是仿制品、赝
从神话的类型上看,盘古开天地属于_______神话。
Lookatthestatementsbelowandatthefiveextractsfromanarticleabouttherelationshipbetweenstrategicalliancesandorg
A、SinceI’veboughtaPSP,Ican’taffordtogototheconcert.B、MyPSPisworthmorethanaticketfortheconcert.C、Idon’t
最新回复
(
0
)