首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知平面上三条不同直线的方程分别为 l1:ax+2by+3c=0, l2:bx+2cy+3a=0, l3:cx+2ay+3b=0, 试证这三条直线交于一点的充分必要条件为a+b+c=0.
已知平面上三条不同直线的方程分别为 l1:ax+2by+3c=0, l2:bx+2cy+3a=0, l3:cx+2ay+3b=0, 试证这三条直线交于一点的充分必要条件为a+b+c=0.
admin
2016-05-31
104
问题
已知平面上三条不同直线的方程分别为
l
1
:ax+2by+3c=0,
l
2
:bx+2cy+3a=0,
l
3
:cx+2ay+3b=0,
试证这三条直线交于一点的充分必要条件为a+b+c=0.
选项
答案
方法一:必要性: 设三条直线l
1
,l
2
,l
3
交于一点,则其线性方程组为: [*] =3(a+b+c)[(a-b)
2
+(b—c)
2
+(c—a)
2
],但根据题设可知(a-b)
2
+(b-c)
2
+(c-a)
2
≠0,故a+b+c=0. 充分性: 由a+b+c=0,则从必要性的证明中可知,|A|=0,故r(A)<3.由于 [*] 因此方程组(1)有唯一解,即三直线l
1
,l
2
,l
3
交于一点. 方法二:必要性: 设三直线交于一点(x
0
,y
0
),则[*]为Ax=0的非零解,其中 [*] =-3(a+b+c)[(a-b)
2
+(b-c)
2
+(c-a)
2
],但根据题设可知(a-b)
2
+(b-c)2+(c-a)
2
≠0,故 a+b+C=0. 充分性: 考虑线性方程组 [*] 将方程组(2)的三个方程相加,并由a+b+c=0可知,方程组(2)等价于方程组 [*] 故方程组(3)有唯一解,即方程组(2)有唯一解,亦即三直线l
1
,l
2
,l
3
交于一点.
解析
转载请注明原文地址:https://kaotiyun.com/show/aGT4777K
0
考研数学三
相关试题推荐
法律作为上层建筑的重要组成部分,不是凭空出现的,而是产生于特定社会物质生活条件基础之上。在阶级社会中,决定法律性质和内容的是()。
基础不牢,地动山摇。社会治理的重心要向基层下移落到()
设矩阵Am×n的秩为r(A)=m<n,Em为m阶单位矩阵,下列结论中正确的是().
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:(1)t为何值时,向量组α1,α2,α3线性相关?(2)t为何值时,向量组α1,α2,α3线性无关?
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
设β,α1,α2线性相关,β,α2,α3线性无关,则().
设向量组α1,α2,…,αm线性无关,向量β1可用它们线性表示,β2不能用它们线性表示,证明向量组α1,α2,…,αm,λβ1+β2(λ为常数)线性无关.
设对于半空间x>0内的任意光滑的定向封闭曲面∑,恒有其中f(x)在(0,+∞)内具有一阶连续导数.(1)求出f(x)满足的微分方程;(2)若f(1)=e2,求f(x).
求由下列曲线所围成的闭区域D的面积:(1)D是由直线ax+by=r1,ax+by=r2,cx+dy=s1,cx+dy=s2所围成的平行四边形闭区域,其中r1<r2,s1<s2,ad-bc≠0;(2)D是由曲线xy=4,xy3=4,xy=8,y3=15所
随机试题
新中国成立之际,毛泽东提出的外交方针有()
86下列有关粉碎目的的论述中,错误的是
关于药品贮藏有关规定的说法,错误的是
骨折早期并发症不包括
()负责输入记账凭证和原始凭证等会计数据。
人民币是我国的法定货币,在会计核算过程中,下列说法正确的是( )。
如果甲产品的价格上升引起乙产品需求曲线向左移动,那么,以下说法正确的是()。
学生掌握知识的速度与质量,依赖于学生原有的()高低。
下列各项属于唯物辩证法的基本规律的有()。
无条件反射是动物和人生下来就具有的,在系统发育过程中所形成而遗传下来的,对外部生活条件特有的稳定的反应方式。下列哪项符合无条件反射的定义()
最新回复
(
0
)