首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1,a2线性无关,a1+b,a2+b线性相关,求向量b用a1,a2线性表示的表达式.
设a1,a2线性无关,a1+b,a2+b线性相关,求向量b用a1,a2线性表示的表达式.
admin
2016-05-31
25
问题
设a
1
,a
2
线性无关,a
1
+b,a
2
+b线性相关,求向量b用a
1
,a
2
线性表示的表达式.
选项
答案
因为a
1
+b,a
2
+b线性相关,故存在不全为零的常数k
1
,k
2
,使k
1
(a
1
+b)+k
2
(a
2
+b)=0,则有(k
1
+k
2
)b=-k
1
a
1
-k
2
a
2
. 又因为a
1
,a
2
线性无关,若 k
1
a
1
+k
2
a
2
=0,则k
1
=k
2
=0. 这与k
1
,k
2
不全为零矛盾,于是有 k
1
a
1
+k
2
a
2
≠0,(k
1
+k
2
)b≠0. 由a
1
,a
2
线性无关,a
1
+b,a
2
+b线性相关,因此b≠0. 综上k
1
+k
2
≠0,因此由(k
1
+k
2
)b=-ka
1
-k
2
a
2
,即 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/bFT4777K
0
考研数学三
相关试题推荐
材料1 位于长江之滨的江苏张家港,是我国犯罪率最低的城市之一。与之紧密相关的是,张家港还是首批获评全国文明城市的县级市。早在20年前,这里就以精神文明建设成就享誉全国。长期的文明浸润,涵养了这座城市的法治文化,孕育了张家港人的法治精神。 材料2
材料1 位于长江之滨的江苏张家港,是我国犯罪率最低的城市之一。与之紧密相关的是,张家港还是首批获评全国文明城市的县级市。早在20年前,这里就以精神文明建设成就享誉全国。长期的文明浸润,涵养了这座城市的法治文化,孕育了张家港人的法治精神。 材料2
随着科技的进步尤其是“互联网+”的发展,出现了代驾、陪购师、网络主播等新兴职业。这些新兴职业在给社会带来效率或便利的同时,也面临着如何规范的问题,制定相关的法律法规刻不容缓。由此可见()。
设向量组(Ⅰ):α1=(α11,α21,α31)T,α2=(α12,α22,α32)T,α3=(α12,α23,α33)T,向量组(Ⅱ):β1=(α11,α21,α31,α41)T,β2=(α12,α22,α32,α42)T,β3=(α12,α2
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:(1)t为何值时,向量组α1,α2,α3线性相关?(2)t为何值时,向量组α1,α2,α3线性无关?
设β,α1,α2线性相关,β,α2,α3线性无关,则().
设α1,α2,…,αr(r≤n)是互不相同的数,αi=(1,αi,αi2,…,αin-1)(i=1,2,…,r),问α1,α2,…,αr是否线性相关?
随机试题
肌腱损伤近年来缝合方法有所改变,主要是改用显微外科技术,指的是
房地产经纪机构因国家颁布实施新的政策所引起的风险属于()。[2006年考试真题]
工程项目质量在项目实施过程中,包括项目的()阶段。
资产负债表左侧各项目是按照各自的流动性大小,即变现能力的强弱来排列的,反映企业资产可变现的数额和变现的速度(流动性),提供企业支付能力的信息。()
某公司原有设备一套,购置成本为15万元,预计使用10年,已使用5年,原有设备技术已经落后,该公司用直线法提取折旧,预计残值只有原值的10%。为提高生产率,降低成本,现该公司拟购买一套新设备,新设备购置成本为20万元,使用年限为5年,同样用直线法提取折旧,预
因工外出期间,由于工作原因受到伤害或者发生事故下落不明的,应当认定为工伤。()
以下关于盈余公积的说法中,正确的有()。
古名“桑泊”指现在的()。
设f(χ)二阶连续可导,且f〞(χ)≠0.又f(χ+h)=f(χ)+f′(χ+θh)h(0<θ<1).证明.
-36π
最新回复
(
0
)