设奇函数f(x)在[一1,1]上二阶可导,且f(1)=1,证明: (1)存在ξ∈(0,1),使得f’(ξ)=1;(2)存在η∈(一1,1),使得f"(η)+f’(η)=1.

admin2020-03-16  20

问题 设奇函数f(x)在[一1,1]上二阶可导,且f(1)=1,证明:
    (1)存在ξ∈(0,1),使得f’(ξ)=1;(2)存在η∈(一1,1),使得f"(η)+f’(η)=1.

选项

答案(1)令h(x)=f(x)一x, 因为f(x)在[一1,1]上为奇函数,所以f(0)=0, 从而h(0)=0,h(1)=0, 由罗尔定理,存在ξ∈(0,1),使得h’(ξ)=0, 而h’(x)=f’(x)一1,故ξ∈(0,1),使得f’(ξ)=1. (2)令φ(x)=ex[f’(x)一1], 因为f(x)为奇函数,所以f’(x)为偶函数,由f’(ξ)=1得f’(一ξ)=1. 因为φ(一ξ)=φ(ξ),所以存在η∈(一ξ,ξ)[*](一1,1),使得φ’(η)=0, 而φ’(x)=ex[f"(x)+f’(x)一1]且ex≠0, 故f"(η)+f’(η)=1.

解析
转载请注明原文地址:https://kaotiyun.com/show/bb84777K
0

最新回复(0)