首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上可导,且f’+(a)>0,f’-(b)>0,f(a)≥f(b),求证:f’(x)在(a,b)至少有两个零点.
设f(x)在[a,b]上可导,且f’+(a)>0,f’-(b)>0,f(a)≥f(b),求证:f’(x)在(a,b)至少有两个零点.
admin
2017-05-31
26
问题
设f(x)在[a,b]上可导,且f’
+
(a)>0,f’
-
(b)>0,f(a)≥f(b),求证:f’(x)在(a,b)至少有两个零点.
选项
答案
f(x)在[a,b]的连续性,保证在[a,b]上f(x)至少达到最大值和最小值各一次.由f(a)≥f(b)得,若f(x)的最大值在区间端点达到,则必在x=a达到.由f(x)的可导性,必有f’
+
(a)≤0,条件f’
+
(a)>0表明f(x)的最大值不能在端点达到.同理可证f(x)的最小值也不能在端点x=a或x=b达到.因此,f(x)在[a,b]的最大值与最小值必在开区间(a,b)达到,于是最大值点与最小值点均为极值点.又f(x)在[a,b]可导,在极值点处f’(x)=0,所以f’(x)在(a,b)至少有两个零点.
解析
转载请注明原文地址:https://kaotiyun.com/show/cMt4777K
0
考研数学二
相关试题推荐
设a。,a1,…an为满足的实数,证明方程a。+a1x+a2x2+…+anxn=0在(0,1)内至少有一个实根.
作x2+(y-3)2=1的图形,并求出两个y是x的函数的单值支的显函数关系.
设A,B为满足AB=0的任意两个非零矩阵,则必有
设曲线方程为γ=e-x(x≥0).(I)把曲线y=e-x(x≥0)、x轴、y轴和直线x=ξ(ξ>0)所围成平面图形绕x轴旋转一周得一旋转体,求此旋转体的体积V(ξ),求满足(Ⅱ)在此曲线上找一点,使过该点的切线与两个坐标轴所夹平面图形的面积最大,并求出
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是().
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:存在两个不同的点η,ξ∈(0,1),使得f’(η)f’(ξ)=1.
二元函数f(x,y)在点(x0,y0)处两个偏导数f’(x0,y0),fx’(x0,y0)存在是f(x,Y)在该点连续的
设y1,y2是一阶线性非齐次微分方程y.+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则
随机试题
下列哪项不是梅毒的晚期表现
口腔颌面外科手术全麻特点不包括
世界上第一个现代意义上的结算机构是()。
( )可以向中国证监会申请基金代销业务资格。
依据企业所得税法的规定,下列各项中按负担所得的所在地确定所得来源地的是()。
某学校网络中一台计算机的IP地址为:202.112.81.34,对应的子网掩码是255.255.255.0,该IP地址属于()。
为庆祝首个“世界城市日”,“以人为本城镇化,促进城市社会包容”主题活动在()举行。
某网站公示你单位工作效率低下,且迟到早退问题严重,领导认为该公示与现实完全不符。让你去交涉。你怎么办?
Inrecentyears,therehasbeenasteadyassaultonsaltfromthedoctors:Saltisbadforyou—regardlessofyourhealth.Poli
Everygrouphasaculture,howeveruncivilizeditmayseemtous.Totheprofessionalanthropologist,thereisnointrinsicsupe
最新回复
(
0
)