首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶实对称可逆矩阵,f(χ1,χ2,…,χn)= (1)记X=(χ1,χ2,…,χn)T,把二次型f(χ1,χ2,…,χn)写成矩阵形式; (2)二次型g(X)=XTAX是否与f(χ1,χ2,…,χn)合同?
设A为n阶实对称可逆矩阵,f(χ1,χ2,…,χn)= (1)记X=(χ1,χ2,…,χn)T,把二次型f(χ1,χ2,…,χn)写成矩阵形式; (2)二次型g(X)=XTAX是否与f(χ1,χ2,…,χn)合同?
admin
2019-04-22
28
问题
设A为n阶实对称可逆矩阵,f(χ
1
,χ
2
,…,χ
n
)=
(1)记X=(χ
1
,χ
2
,…,χ
n
)
T
,把二次型f(χ
1
,χ
2
,…,χ
n
)写成矩阵形式;
(2)二次型g(X)=X
T
AX是否与f(χ
1
,χ
2
,…,χ
n
)合同?
选项
答案
(1)f(X)=(χ
1
,χ
2
…χ
n
)[*] 因为r(A)=n,所以|A|≠0,于是[*]A
*
=A
-1
,A
*
,A
-1
都是实对称矩阵. (2)因为A可逆,所以A的n个特征值都不是零,而A与A
-1
合同,故二次型f(χ
1
,χ
2
,…,χ
n
)与g(X)=X
T
AX规范合同.
解析
转载请注明原文地址:https://kaotiyun.com/show/eCV4777K
0
考研数学二
相关试题推荐
设A、B均为三阶矩阵,E是三阶单位矩阵,已知AB=2A+B,B=,则(A-E)-1=_______.
=_______________?
微分方程xy’=+y的通解为_______.
设则二次型的对应矩阵是__________。
设f(x)是以T为周期的连续函数,且F(x)=f(t)dt+bx也是以T为周期的连续函数,则b=________
若向量组α1,α2,α3,α4线性相关,且向量α4不可由向量组α1,α2,α3线性表示,则下列结论正确的是().
设A为n阶实对称矩阵,P是n阶可逆矩阵,已知n维列向量α是A的属于特征值λ的特征向量,则矩阵(P一1AP)T属于特征值λ的特征向量是()
设y=f(χ)为区间[0,1]上的非负连续函数.(1)证明存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(χ)为曲边的曲边梯形的面积;(2)设f(χ)在(0,1)内可导,且f′(χ)>-,
设y=f(x)是区间[0,1]上的任一非负连续函数。(Ⅰ)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的梯形面积。(Ⅱ)又设f(x)在区间(0,1)内可导,且f’(x)>-2
随机试题
最低工资
女性,45岁,右乳房胀痛已4年余,月经前显著,行经后胀痛缓解,近期症状加重,月经前后均感胀痛且自感触及肿块。左乳房内上象限扪及3cm×3cm肿块,质地偏硬,边界不太清楚,与皮肤胸肌无粘连;左腋下可扪及肿大淋巴结3个,质韧,约蚕豆大小,活动良好。病理证实
腊肠样改变可见于
下列药物中可用于缓慢型心律失常的是()。
建筑工程施工质量验收中,经返工重做或更换器具、设备的检验批,应()。
经济学家依据逻辑思维,结合计量经济学技术,设计了国家风险的计量模型,其中包括()。
下列关于结构性理财计划的论述中,错误的一项是()。
下列不属于酒店公寓的特约服务特点的是()
在进行WAIS-RC的知识测验时,如果()题均失败则回头做1~4项。
某研究者在进行研究设计时,根据高等教育大众化时期教育质量下降的问题将自己的研究主题确定为“内涵式发展战略下的教学质量提升研究”。这一选题属于
最新回复
(
0
)