首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2+…+(n-1)αn-1=0,b=α1+α2+…+αn. (1)证明方程组AX=b有无穷多个解; (2)求方程组AX=b的通解.
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2+…+(n-1)αn-1=0,b=α1+α2+…+αn. (1)证明方程组AX=b有无穷多个解; (2)求方程组AX=b的通解.
admin
2017-09-15
169
问题
设n阶矩阵A=(α
1
,α
2
,…,α
n
)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α
1
+2α
2
+…+(n-1)α
n-1
=0,b=α
1
+α
2
+…+α
n
.
(1)证明方程组AX=b有无穷多个解;
(2)求方程组AX=b的通解.
选项
答案
(1)因为r(A)=n-1,又b=α
1
+α
2
+…+α
n
,所以r([*])=n-1, 即,r(A)=r([*])=n-1<n,所以方程组AX=b有无穷多个解. (2)因为α
1
+2α
2
+…+(n-1)α
n-1
=0,所以α
1
+2α
2
+…+(n-1)α
n-1
+0α
n
=0,即齐次线性方程组AX=0有基础解系ξ=(1,2,…,n-1,0)
T
, 又因为b=α
1
+α
2
+…+α
n
,所以方程组AX=b有特解,η=(1,1,…,1)
T
, 故方程组AX=b的通解为 kξ+η(1,2,…,n-1,0)
T
+(1,1,…,1)
T
(k为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/hsk4777K
0
考研数学二
相关试题推荐
[*]
求下列隐函数的导数(其中,a,b为常数):(1)x2+y2-xy=1(2)y2-2axy+b=0(3)y=x+lny(4)y=1+xey(5)arcsiny=ex+y
证明曲线y=x4-3x2+7x-10在x=1与x=2之间至少与x轴有—个交点.
设a。,a1,…an为满足的实数,证明方程a。+a1x+a2x2+…+anxn=0在(0,1)内至少有一个实根.
若f(x)是连续函数,证明
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3;
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
[*]由于Aα与α线性相关,则存在数k≠0使Aα=kα,即a=ka,2a+3=k,3a+4=k三式同时成立.解此关于a,k的方程组可得a=-1,k=1.
已知函数f(u)具有二阶导数,且f’(0)=1,函数y=y(x)由方程y-xey-1=1所确定.设z=f(lny-sinx),
随机试题
患者男性,49岁,近1个月来突感胸骨后闷胀窒息感,伴恶心、呕吐及冷汗,休息后10分钟左右可缓解,未予诊治,近半月上述症状逐渐频繁,程度较前明显加剧,休息后缓解后上述症状再次发作,性质同前,休息不能缓解,自服硝酸甘油半小时未能缓解。此患者可能是发生了
患者男,67岁。高血压170/105mmHg,未规范化治疗,近期头晕,遂入院。患者心血管危险度分级为
主要作用于原发性红细胞外期的抗疟药是
患者,男,50岁,食管癌。行食管胃吻合术后第5天,突然出现高热、寒战、呼吸困难、胸痛,血白细胞计数20×109/L。该患者最可能发生了
某建设项目有关资料如下:(1)项目计算期10年,其中建设期2年。项目第3年投产,第5年开始达到100%设计生产能力。(2)项目固定资产投资9000万元(不含建设期贷款利息和固定资产投资方向调节税),预计8500万元形成固定资产,500万元
属于对水工建筑物强度问题研究内容的有()。
以下选项中,()属于编制任务分解表中设计阶段的投资控制。
在我国古代,很多事物往往被人们寄予特定的含义,下列事物及其寓意对应错误的是()。
设f(x)在x=a处可导,且f(a)=1,f’(a)=3,求数列极限
CharlesDickenswasafamousnineteenth-centurywriterandthesignature"CharlesDickens"israrityenoughtocommandaprice.W
最新回复
(
0
)