首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系, β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=tsαs+t2α1, 其中t1,t2为实常数。试问t1,t2满足什么条件时,β1,β2,…,βs也为Ax=0的一个基础解系。
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系, β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=tsαs+t2α1, 其中t1,t2为实常数。试问t1,t2满足什么条件时,β1,β2,…,βs也为Ax=0的一个基础解系。
admin
2017-01-14
23
问题
设α
1
,α
2
,…,α
s
为线性方程组Ax=0的一个基础解系,
β
1
=t
1
α
1
+t
2
α
2
,β
2
=t
1
α
2
+t
2
α
3
,…,β
s
=t
s
α
s
+t
2
α
1
,
其中t
1
,t
2
为实常数。试问t
1
,t
2
满足什么条件时,β
1
,β
2
,…,β
s
也为Ax=0的一个基础解系。
选项
答案
因为β
i
(i=1,2,…,s)是α
1
,α
2
,…,α
s
的线性组合,且α
1
,α
2
,…,α
s
是Ax=0的解,所以根据齐次线性方程组解的性质知β
i
(i=1,2,…,s)均为Ax=0的解。 从α
1
,α
2
,…,α
s
是Ax=0的基础解系知s=n-r(A)。 以下分析β
1
,β
2
,…,β
s
线性无关的条件: 设k
1
β
1
+k
2
β
2
+…+k
s
β
s
=0,即 (t
1
k
1
+t
2
k
s
)α
1
+(t
2
k
1
+t
1
k
2
)α
2
+(t
2
k
2
+t
1
k
3
)α
3
+…+(t
2
k
s-1
+t
1
k
s
)α
s
=0, 由于α
1
,α
2
,…,α
s
线性无关,所以 [*] 又因系数矩阵的行列式 [*] 当[*]时,方程组(*)只有零解k
1
=k
2
=…=k
s
=0。因此当s为偶数且t
1
≠±t
2
,或当s为奇数且t
1
≠-t
2
时,β
1
,β
2
,…,β
s
线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/eWu4777K
0
考研数学一
相关试题推荐
[*]
[*]本题是两个不同分布的综合问题,所求的事件Vn为n次独立重复实验中X的观测值不大于0.1的次数,故Vn服从二项分布b(n,p),而这里p为X的观测值不大于0.1的概率,需要根据X服从的分布来计算.
用集合运算律证明:
设曲线方程为y=e-x(x≥0)(1)把曲线y=e-x,x轴,y轴和直线x=ε(ε>0)所谓平面图形绕x轴旋转一周得一旋转体,求此旋转体的体积V(ε),求满足的a;(2)在此曲线上找一点,使过该点的切线与两坐标轴所夹平面图形的面积最大,并求出该面积。
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则fˊ(1)=().
试证:当x>0时,(x2-1)lnx≥(x-1)2.
由结论可知,若令φ(x)=xf(x),则φˊ(x)=f(x)+xfˊ(x).因此,只需证明φ(x)在[0,1]内某一区间上满足罗尔定理的条件.令φ(x)=xf(x),由积分中值定理可知,存在η∈(0,1/2)使[*]
设矩阵且|A|=﹣1.又设A的伴随矩阵A*有特征值λo,属于λo的特征向量为α=(﹣1,﹣1,1)T,求a,b,c及λo的值.
因为积分区域关于直线y=x对称,[*]
设三阶矩阵A的特征值为λ1=-1,λ2=0,λ3=1,则下列结论不正确的是().
随机试题
由乙酸~丙二酸途径生成的化合物是
原发性肾病综合征患者,若病理类型为微小病变型,首选的治疗药物是
肝硬化腹水患者,近1周发热,腹胀,稍有呼吸困难,腹水较前增长,心率96次/分。最可能的诊断是
F公司是一家专营进口高档家具的企业。媒体曝光该公司有部分家具是在国内生产后。以“先出口,再进口”的方式取得进口报关凭证,在销售时标注为外国原产,以高于出厂价数倍的价格销售。此时,已经在F公司购买家具的顾客。可以行使下列哪些权利?(2011年试卷一第65题)
下列建筑中必须进行天然地基的抗震承载力验算的是()
根据我国《专利法》规定,授予专利权的发明和实用新型,需要具备的实体性条件包括()
针对不同的传输介质,Ethernet网卡提供了相应的接口,其中适用于非屏蔽双绞线的网卡应提供______。
如果要将一个窗体从内存中清除,应使用的语句是
Isyourfamilyinterestedinbuyingadog?Adogcanbeahappy【B1】______toyourfamily,butifyouchoosethewrongkindofdog
A、6.5kilometers.B、5.6miles.C、5kilometers.D、4miles.C由选项可知,本题可能问路程或距离。录音中段提到,这个机器人配送快递时,是以每小时6.5千米,即每小时4英里的速度行进,一次最多可以走5千米
最新回复
(
0
)