首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
职业资格
案例:阅读下列三位教师有关“正弦定理”的教学片段。 教师甲的教学过程: 创设情境: 问题1:在建设水口电站闽江桥时,需预先测量桥长AB,于是在江边选取一个测量点C,测得CB=435m,∠CBA=88°,∠BCA=42°。由
案例:阅读下列三位教师有关“正弦定理”的教学片段。 教师甲的教学过程: 创设情境: 问题1:在建设水口电站闽江桥时,需预先测量桥长AB,于是在江边选取一个测量点C,测得CB=435m,∠CBA=88°,∠BCA=42°。由
admin
2015-08-13
76
问题
案例:阅读下列三位教师有关“正弦定理”的教学片段。
教师甲的教学过程:
创设情境:
问题1:在建设水口电站闽江桥时,需预先测量桥长AB,于是在江边选取一个测量点C,测得CB=435m,∠CBA=88°,∠BCA=42°。由以上数据,能测算出桥长AB吗?这是一个什么数学问题?
引出:解三角形——已知三角形的某些边和角,求其他的边和角的过程。
(设计意图:从实际问题出发,引入数学课题。)
师:解三角形,需要用到许多三角形的知识,你对三角形中的边角知识知多少?
生:……,“大角对大边,大边对大角”。
师:“a>b>c←→A>B>C”,这是定性地研究三角形中的边角关系,我们能否更深刻地、从定量的角度研究三角形中的边角关系?
引出课题:“正弦定理”。
教师乙的教学过程:
师:请同学们想一想,我们以前遇到解三角形的一般问题时,是怎样处理的?
众学生:先从特殊事例入手,寻求答案或发现解法。可以以直角三角形为特例,先在直角三角形中试探一下。
师:如果一般三角形具有某种边角关系,那么对于特殊的三角形——直角三角形也是成立的,因此我们先研究特例,请同学们对直角三角形进行研究,寻找一般三角形的各边及其对角之间的关系。同学们可以参与小组共同研究。
(1)学生以小组为单位进行研究;教师观察学生的研究进展情况或参与学生的研究。
(2)展示学生研究的结果。
师:请说出你研究的结论?
生:
师:你是怎样想出来的?
生:因为在直角三角形中,它们的比值都等于斜边c。
师:有没有其他的研究结论?(根据实际情况,引导学生分析判断结论正确与否,或留课后进一步深入研究。)
师:
对一般三角形是否成立呢?
众学生:不一定,可以先用具体例子检验,若有一个不成立,则否定结论;若都成立,则说明这个结论很可能成立,再想办法进行严格的证明。
师:这是个好主意。那么
对等边三角形是否成立呢?
生:成立。
师:对任意三角形
是否成立呢?现在让我们借助于《几何画板》做一个数学实验,……
师:借助于电脑与多媒体,利用《几何画板》软件,演示正弦定理教学课件。边演示边引导学生观察三角形形状的变化与三个比值的变化情况。
结论:
对于任意三角形都成立。
教师丙的教学过程:
师:对任意的三角形,如何用数学的思想方法证明
呢?之前的探索对我们有没有帮助?学生分组讨论,每组派一个代表总结。(以下的证明过程,根据学生回答情况进行叙述)
生:思考得出
①在Rt△ABC中成立,如前面检验。
②在锐角三角形中,如图1设BC=a,CA=b,AB=c
作:AD⊥BC,垂足为D
在Rt△ABD中,
∴AD=AB·sinB=c·sinB
在Rt△ADC中,
∴AD=AC·sinC=b·sinC
∴csinB=bsinC
∴
同理,在△ABC中,
∴
③在钝角三角形中,如图2设∠C为钝角,BC=a,CA=b,AB=c
作AD⊥BC交BC的延长线于D
在Rt△ABD中,
∴AD=AB·sinB=c·sinB
在RT△ADC中,
∴AD=AC·sin∠ACD=b·sin∠ACB
∴c·sinB=b·sin∠ACB
∴
同锐角三角形证明可知
师:我们把这条性质称为正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即
问题:
(1)分析三种教学过程的特点。
(2)说明正弦定理的教学过程中应该注意的问题。
选项
答案
(1)教师甲:从联系的观点,从新的角度看过去的问题,使学生对于过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,形成良好的知识结构。 教师乙:教师参与学生之间的研究,增进师生之间的思维与情感的交流,并通过教师的指导与观察,及时掌握学生研究的情况,为展示学生的研究结论作准备;同时通过展示研究结论,强化学生学习的动机,增进学生的成功感及学习的信心。引导学生的思维逐步形成“情境思考”一“提出问题”一“研究特例”一“归纳猜想”一“实验探究”一“理论探究”一“解决问题”的思维方式,进而形成解决问题的能力。 教师丙:经历证明猜想的过程,进一步引导启发学生利用已有的数学知识论证猜想,力图让学生体验数学的学习过程。 (2)“解三角形”既是高中数学的基本内容,又有较强的应用性,在这次课程改革中,被保留下来,并独立成为一章。解三角形作为几何度量问题,应突出几何的作用和数量化的思想,为学生进一步学习数学奠定基础。“正弦定理”作为单元的起始课,为后续内容作知识与方法的准备,是在学生已有的三角函数及向量知识的基础上,通过对三角形边角关系作量化探究,发现并掌握正弦定理(重要的解三角形工具),解决简单的三角形度量问题。教学过程中,应发挥学生的主动性,通过探索发现、合情推理与演绎证明的过程,提高学生的思辨能力。
解析
转载请注明原文地址:https://kaotiyun.com/show/f9tv777K
本试题收录于:
数学学科知识与教学能力题库教师资格分类
0
数学学科知识与教学能力
教师资格
相关试题推荐
人民教育出版社普通高中课程标准实验教科书《思想政治》必修3第三课《文化的多样性与文化的传播》的第二框《文化在交流中传播》一共包括以下三个小标题:(1)生活中的文化传播(2)大众传媒:现代文化传播的手段(3)文化交流:做传播中华文化的使者请以此为内容
实施科教兴国战略的根本途径是()。
目前世界范围内,最普遍和最基本的教学组织形式是()。
成就动机理论的主要代表人物阿特金森认为避免失败者的目的是避免失败,减少失败感,所以他们倾向于选择非常容易或非常困难的任务。当一项任务的成功率为50%时,他们会()。
马克思主义认识论首要的、基本的观点是()。
在课程资源的开发与利用上,新课程主张建立融合、开放、发展的课程观,鼓励教师和学生从实际出发,因地制宜,积极创造和利用课程资源。下列选项中,可以成为思想品德课程资源的有()。①各类教育软件②红色旅游地③机关、企业、事业单位
以下材料是某教师在讲授《学会合理消费》一课时所确立的教学重点和教学难点。教学重点:学会理财,合理消费。教学难点:学会合理消费、确立绿色消费观。在现实生活中能从知到行,真正有效地提高这方面的能力。问题:谈谈在教学过程中如何确定教
案例:下面是某位同学用开方法解方程的过程。求(3x+1)2一4=0方程中的值解:(3x+1)2一4=0移项(3x+1)2=4开平方3x+1=2移项3x=1所以x=问题:
若函数f(x)在[a,b]上连续,在(a,b)内可导,且x∈(a,b)时f(x)>0,又f(a)<0,则()。
新课程标准对于运算能力的基本界定是()。
随机试题
阅读下面的古诗,回答问题。青溪王维言入黄花川,每逐青溪水。随山将万转,趣途无百里。声喧乱石中,色静深松里。漾漾泛
旅客从候机楼上机时飞机停放的机坪,这个机坪要求能使旅客尽量减少步行上机的距离是()
汽车的制动距离指驾驶员开始踩制动踏板到完全停车所需的距离,它与制动开始时的车速()。
下列关于不具有商业实质的企业非货币性资产交换的会计处理表述中,不正确的是()。
甲有限责任公司董事陈某拟出售一辆轿车给本公司,公司章程对董事、高级管理人员与本公司交易事项未作规定。根据公司法律制度的规定,陈某与本公司进行交易须满足的条件是()。
警察不是从来就有的,也不是永世长存的。()
在市场经济条件下,能够自发地调节劳动力和生产资料在社会生产各部门之间的分配,使之大体保持平衡的信号是()。
一个不容忽视的事实是,当今世界的人才流动和教育资源供给呈现明显的国际化趋势,有条件的家长和考生更倾向于在全球视野中来审视各所大学。同时,今天考生成长的途径也日益多元化,内地去国外读大学的人逐年增加,而内地教育部门与高校仍然以单一的考核标准指挥着高考这一出教
到岸价(CIF,CostInsuranceandFreight)
LastyearintheUnitedStates,womenwhoranforstateandnationalofficeswereaboutaslikelytowinasmen.However,onlya
最新回复
(
0
)