首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(a,b)内可微,且 f(a)=f(b)=0,f′(a)<0,f′(b)<0, 则方程f′(x)=0在(a,b)内( ).
设f(x)在(a,b)内可微,且 f(a)=f(b)=0,f′(a)<0,f′(b)<0, 则方程f′(x)=0在(a,b)内( ).
admin
2016-01-25
67
问题
设f(x)在(a,b)内可微,且
f(a)=f(b)=0,f′(a)<0,f′(b)<0,
则方程f′(x)=0在(a,b)内( ).
选项
A、没有实根
B、有且仅有一个实根
C、有且仅有两个不等实根
D、至少有两个不等实根
答案
D
解析
利用极限的保号性及f′(a)<0,f′(b)<0.先证明存在一点c∈(a,b),使f(c)=0.于是f(x)有三个零点,两次使用罗尔定理便得到结论(D)成立.
因
利用极限的保号性,在a的右邻域内必存在点x
1
,使f(x
1
)<0,其中a<x
1
<
.
同理由f′(b)<0知,必存在一点x
2
,使f(x
2
)>0,其中
<x
2
<b.由连续函数的零点定理知,必存在C∈(x
1
,x
2
)
(a,b),使f(c)=0.
在闭区间[a,c],[(c,b]上对f(x)分别使用罗尔定理可知,至少存在一点ξ
1
∈(a,C)使得f′(ξ
1
)=0,至少存在一点ξ
2
∈(c,b)使f′(ξ
2
)一0.故方程f′(x)=0在(a,b)内至少有两个不等实根,仅(D)入选.
转载请注明原文地址:https://kaotiyun.com/show/gOU4777K
0
考研数学三
相关试题推荐
习近平强调,要正确认识当前经济形势,深入调查研究,以更大的力度推进全面深化改革,积极破解发展面临的各种难题、化解来自各方面的风险挑战和巨大压力,为推进改革发展、战胜各种风险挑战凝聚广泛共识、汇聚强大力量。推进全面深化改革要
习近平总书记指出:“在整个发展过程中,都要注重民生、保障民生、改善民生,让改革发展成果更多更公平惠及广大人民群众,使人民群众在共建共享发展中有更多获得感。”我们之所以强调保障和改善民生,是因为
坚持和完善社会主义基本经济制度是习近平新时代中国特色社会主义思想的重要内容。党的十九届四中全会提出的社会主义基本经济制度包括
手工业社会主义改造是中国在建立了无产阶级专政的条件下,通过合作化道路,把个体手工业经济改造成为社会主义集体经济的过程。下列关于手工业社会主义改造的正确说法是
中国特色社会主义是改革开放以来党的全部理论和实践的主题。胡锦涛指出,中国特色社会主义的本质属性是
设函数f(x)=(x2-3x+2)sinx,则方程fˊ(x)=0在(0,π)内根的个数为()。
设f(x)在[a,b]上连续,且f(x)>0,x∈[a,b],证明:(1)Fˊ(x)≥2;(2)方程F(x)=0在区间(a,b)内有且仅有一个根.
随机试题
王某1998年于医科大学本科毕业分配到市级医院工作,《中华人民共和国执业医师法》颁布3个月后,其依照有关开办医疗机构的规定申请个体开业。依据《执业医师法》卫生行政部门应
关于环境污染对人体健康危害的特点,哪项是错误的
位于A县的某热水瓶厂生产了一批热水瓶,其在B县与代理商签订合同协议约定由代理商负责在C县销售。住在D县的杨某在旅游到C县时购买了该热水瓶,后在拿回家使用的过程中因为该热水瓶爆炸而造成杨某面部严重受伤,杨某欲以侵权损害赔偿为由提起诉讼。则对该案具有管辖权的法
主要适用于以最大限度地满足招标文件实质要求为主要评标因素的复杂的和有特殊要求的项目的方法是()。
根据我国对标准级别的划分,对没有国家标准和行业标准而又需要在该地区范围内统一的技术要求所制定的标准是( )。
以学生发展为本的课程,要求把课程改革建立在脑科学研究、心理学研究和()研究的基础之上,把学生的发展作为课程开发的着眼点和目标。
利得与所有者投入资本无关。()
班里有6个男生4个女生,现以随机抽签的方式选取3人去开会,则抽中1名男生、2名女生的概率在以下哪个范围之内?
AvalancheandItsSafetyAnavalancheisasuddenandrapidflowofsnow,oftenmixedwithairandwater,downamountainside.A
ConradHiltonreallywantedtobeabanker.Instead,hesuccessfullychangedthe【C1】______purchaseofaTexaslow-endhotelinto
最新回复
(
0
)