首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(a,b)内可微,且 f(a)=f(b)=0,f′(a)<0,f′(b)<0, 则方程f′(x)=0在(a,b)内( ).
设f(x)在(a,b)内可微,且 f(a)=f(b)=0,f′(a)<0,f′(b)<0, 则方程f′(x)=0在(a,b)内( ).
admin
2016-01-25
90
问题
设f(x)在(a,b)内可微,且
f(a)=f(b)=0,f′(a)<0,f′(b)<0,
则方程f′(x)=0在(a,b)内( ).
选项
A、没有实根
B、有且仅有一个实根
C、有且仅有两个不等实根
D、至少有两个不等实根
答案
D
解析
利用极限的保号性及f′(a)<0,f′(b)<0.先证明存在一点c∈(a,b),使f(c)=0.于是f(x)有三个零点,两次使用罗尔定理便得到结论(D)成立.
因
利用极限的保号性,在a的右邻域内必存在点x
1
,使f(x
1
)<0,其中a<x
1
<
.
同理由f′(b)<0知,必存在一点x
2
,使f(x
2
)>0,其中
<x
2
<b.由连续函数的零点定理知,必存在C∈(x
1
,x
2
)
(a,b),使f(c)=0.
在闭区间[a,c],[(c,b]上对f(x)分别使用罗尔定理可知,至少存在一点ξ
1
∈(a,C)使得f′(ξ
1
)=0,至少存在一点ξ
2
∈(c,b)使f′(ξ
2
)一0.故方程f′(x)=0在(a,b)内至少有两个不等实根,仅(D)入选.
转载请注明原文地址:https://kaotiyun.com/show/gOU4777K
0
考研数学三
相关试题推荐
近代中国半殖民地半封建社会的矛盾,呈现出错综复杂的状况。其中,最主要的矛盾是
习近平总书记指出:“在整个发展过程中,都要注重民生、保障民生、改善民生,让改革发展成果更多更公平惠及广大人民群众,使人民群众在共建共享发展中有更多获得感。”我们之所以强调保障和改善民生,是因为
2020年5月22日,十三届全国人大常委会向十三届全国人大三次会议作关于涉港问题的说明,提出要“深入贯彻总体国家安全观,坚持完善‘一国两制’制度体系,把维护中央对特别行政区全面管制权和保障特别行政区高度自治权有机结合起来”。中央对香港特别行政区的全面管制权
2020年2月5日召开的中央全面依法治国委员会第三次会议强调,坚持全面依法治国,是中国特色社会主义国家制度和国家治理体系的显著优势。中国特色社会主义实践向前推进一步,法治建设就要跟进一步。新时代我国法治建设的指导方针是
设f(x)在[a,b]上连续,且f(x)>0,x∈[a,b],证明:(1)Fˊ(x)≥2;(2)方程F(x)=0在区间(a,b)内有且仅有一个根.
设f(x)在[a,b]上连续,在(a,b)内可导,且fˊ(x)≤0,x∈(a,b),证明:Fˊ(x)≤0,x∈(a,b).
试求下列微分方程在指定形式下的解:(1)y〞+3yˊ+2y=0,形如y=erx的解;(2)x2y〞+6xyˊ+4y=0,形如y=xλ的解.
设u=f(x,z),而z=z(x,y)是由方程z=x+yψ(z)所确定的隐函数,其中f有连续偏导数,而ψ有连续导数,求du.
随机试题
轮廓标工程质量检验评定的非关键实测项目为()。
醋酸棉酚的不良反应有
InBritain,peoplehavedifferentattitudestothepolice.Mostpeoplegenerally【C1】______themandthejobtheydo—althoughthe
某施工企业承揽一土石坝工程施工任务,并组建了现场项目部。为加快施工进度,该项目部按坝面作业的铺料、整平和压实三个主要工序组建专业施工队施工,并将该坝面分为三个施工段,按施工段1、施工段2、施工段3顺序组织流水作业,并编制了双代号网络进度计划图。问题:
个人汽车贷款贷后管理环节的主要风险点不包括()。
声誉风险管理部门应当将收集到的声誉风险因素按照()进行排序。
提起监狱,人们常常会联想到高墙、电网,你认为监狱应该是什么样子的?
设函数z=z(x,y)由方程F(y/x,z/x)=0确定,其中F为可微函数,且F′2≠0。则()
VBA中,______函数的功能是输入数据对话框。
HowtoapproachListeningTestPartThree•InthispartoftheListeningTestyoulistentoalongconversationorinterviewan
最新回复
(
0
)