首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
试分析下列各个结论是函数z=f(x,y)在点P0(x0,y0)处可微的充分条件还是必要条件. (1)二元函数的极限存在; (2)二元函数z=f(x,y)在点(x0,y0)的某个邻域内有界; (3) (4)F(x)=f(x0,y0)在点x0处可微,G(y)=
试分析下列各个结论是函数z=f(x,y)在点P0(x0,y0)处可微的充分条件还是必要条件. (1)二元函数的极限存在; (2)二元函数z=f(x,y)在点(x0,y0)的某个邻域内有界; (3) (4)F(x)=f(x0,y0)在点x0处可微,G(y)=
admin
2016-09-13
98
问题
试分析下列各个结论是函数z=f(x,y)在点P
0
(x
0
,y
0
)处可微的充分条件还是必要条件.
(1)二元函数的极限
存在;
(2)二元函数z=f(x,y)在点(x
0
,y
0
)的某个邻域内有界;
(3)
(4)F(x)=f(x
0
,y
0
)在点x
0
处可微,G(y)=f(x
0
,y)在点y
0
处可微;
(5)
(6)
选项
答案
结论(1)~(4)中每一个分别都是z=f(x,y)在点P
0
(x
0
,y
0
)处可微的必要条件,而非充分条件.而结论(5)是其既非充分也非必要条件,结论(6)是其充分非必要条件. 因z=f(x,y)在点P
0
(x
0
,y
0
)处可微,故z=f(x,y)在点P
0
(x
0
,y
0
)处连续,即[*]f(x,y)=f(x
0
,y
0
),则极限[*]f(x,y)必存在,于是z=(x,y)在点P
0
(x
0
,y
0
)某邻域内有界. 结论(3)表示一元函数F(x)=f(x,x
0
)在x
0
处连续,G(y)=f(x
0
,y)在y
0
处连续,它是二元函数z=f(x,y)在点P
0
(x
0
,y
0
)处连续的必要条件,而非充分条件.而z=f(x,y)在点P
0
(x
0
,y
0
)处连续又是其可微的必要条件,且非充分条件. 只要在z=f(x,y)在P
0
(x
0
,y
0
)的全微分定义 △z=A△x+B△y+o(ρ),ρ=[*] 中取特殊情况,分别令△y=0与△x=0即证得结论(4). 结论(5)的[*][fˊ
x
(x,y
0
)-fˊ
x
(x
0
,y
0
)]=0表示偏导函数fˊ
x
(x,y)在y=y
0
时的一元函数fˊ
x
(x,y
0
)在x
0
处连续,它仅是二元偏导函数fˊ
x
(x,y)在P
0
(x
0
,y
0
)处连续的一个必要条件,对[*][fˊ
y
(x
0
,y)-fˊ
y
(x
0
,y
0
)]=0有类似的结果.而z=f(x,y)在P
0
(x
0
,y
0
)处可微又是fˊ
x
(x,y),fˊ
y
(x,y)在P
0
(x
0
,y
0
)处连续的另一个必要条件,所以结论(5)既不是充分条件也不是必要条件. 结论(6)的等价形式是 △z=f(x,y)-f(x
0
,y
0
)=o(ρ),ρ=[*], 它是相应全微分定义中A=0,B=0的情形,则结论(6)是其可微的充分非必要条件.
解析
转载请注明原文地址:https://kaotiyun.com/show/gxT4777K
0
考研数学三
相关试题推荐
-0.02
[*]
[*]
A、 B、 C、 D、 C
2edx+(e+2)dy
A、 B、 C、 D、 C
设矩阵Am×n的秩为r(A)=m<n,Em为m阶单位矩阵,下列结论中正确的是().
设α1,α2,…,αs均为n维向量,下列结论不正确的是().
若函数f(x)在(a,b)内具有二阶导数,且f(x1)=f(x2)=f(x3),其中a<x1<x2<x3<b,证明:在(x1,x3)内至少有一点ε,使得f〞(ε)=0.
随机试题
f(x)=-cosπx+(2x-3)3+(x-1)在区间(-∞,+∞)上零点个数为()
在分析中,下列情况会导致系统误差的是()。
若要用二进制数表示十进制数的0到999,则至少需要______位。
有关急性心肌梗死室间隔破裂穿孔的临床特点正确的是
A、麦角菌科B、多孔菌科C、棕榈科D、伞形科E、百合科茯苓来源于
()不属于组织计划制定要注意的问题。
【背景资料】某项目部承建居民区施工道路工程,制定了详细的交通导行方案,统一设置了各种交通标志、隔离设施、夜间警示信号,沿街居民出入口设置了足够的照明装置。工程要求设立降水井,设计提供了地下管线资料。施工中发生如下事件:事件一:由于位置狭窄,部分围挡
按照审计准则的规定,下列有关总体审计策略和具体审计计划的说法中表述正确的有()。
甲被宣告死亡后,其妻乙改嫁丙。在丙死亡1年后,甲父丁得知甲仍然在世,经过通讯联系后,遂向法院申请撤销死亡宣告。死亡宣告撤销后,甲、乙的婚姻关系()。
A.equippingB.exploreC.presentD.realisticE.noticeablyF.growingupG.interacting
最新回复
(
0
)