首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1=(1,1,0,2)T,α2=(-1,1,2,4)T,α3=(2,3,a,7)T,α4=(-1,5,-3,a+6)T,β=(1,0,2,b)T,问a,b取何值时,(Ⅰ)β不能由α1,α2,α3,α4线性表示?(Ⅱ)β能用α1,α2,α3,α4线性表
已知α1=(1,1,0,2)T,α2=(-1,1,2,4)T,α3=(2,3,a,7)T,α4=(-1,5,-3,a+6)T,β=(1,0,2,b)T,问a,b取何值时,(Ⅰ)β不能由α1,α2,α3,α4线性表示?(Ⅱ)β能用α1,α2,α3,α4线性表
admin
2017-06-08
42
问题
已知α
1
=(1,1,0,2)
T
,α
2
=(-1,1,2,4)
T
,α
3
=(2,3,a,7)
T
,α
4
=(-1,5,-3,a+6)
T
,β=(1,0,2,b)
T
,问a,b取何值时,(Ⅰ)β不能由α
1
,α
2
,α
3
,α
4
线性表示?(Ⅱ)β能用α
1
,α
2
,α
3
,α
4
线性表出,且表示法唯一;(Ⅲ)β能用α
1
,α
2
,α
3
,α
4
线性表出,且表示法不唯一,并写出此时表达式.
选项
答案
设x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=β,对增广矩阵(α
1
,α
2
,α
3
,α
4
[*]β)作初等行变换,有 [*] (Ⅰ)当a=1,b≠2或a=10,b≠-1时,方程组均无解.所以β不能由α
1
,α
2
,α
3
,α
4
线性表出. (Ⅱ)当a≠1且a≠10时,[*]b方程组均有唯一解.所以β能用α
1
,α
2
,α
3
,α
4
线性表示且表示法唯一. (Ⅲ)方程组在两种情况下有无穷多解,即(1)当a=10,b=-1时,方程组有无穷多解: [*] (2)当a=1,b=2时,方程组有无穷多解:x
4
=[*],x
2
=t,x
3
=1-2t,x
1
=5t-[*], 即[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/i0t4777K
0
考研数学二
相关试题推荐
xy+1/8
设f(x)在[0,1]上连续且单调减少,且f(x)>0.证明:∫01xf2(x)dx/∫01xf(x)dx≤∫01f2(x)dx/∫01f(x)dx.
[*]
设(X,Y)为连续型随机向量,已知X的密度函数fX(x)及对一切x,在X=x的条件下Y的条件密度fY|X(y|x).求:(1)密度函数f(x,y);(2)Y的密度函数fY(y);(3)条件密度函数fX|Y(x|y).
已知y=x/lnx是微分方程y’=y/x+φ(x/y)的解,则φ(x/y)的表达式为
设A为3阶实对称矩阵,A的秩为2,且求矩阵A.
k为何值时,线性方程组有唯一解、无解、有无穷多组解?在有解情况下,求出其全部解.
求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3;
f(x1,x2,x3)=ax12+ax22+(a-1)x32+2x1x3—2x2x3.求二次型f的矩阵的所有特征值;
随机试题
开放式问卷
《苦恼》的主旨是()
Thenewly______methodhasbroughtgreateconomicbenefits.
关节病变的基本X线表现不包括()
结核分枝杆菌的生物学性状不包括
[2006年,第42题]下列关于化学反应速率常数k的说法正确的是()
重点调查、典型调查与抽样调查的区别是( )。
教师能根据学生新的特别是意外的情况,迅速而正确地作出判断,随机应变地采取恰当而有效的教育措施解决问题的能力,被称为“教育机智”,这主要反映了教师劳动的()。
对联是我国传统文化的一朵奇葩。请依据以下给出的上联,联系已学过的课文《醉翁亭记》《桃花源记》《小石潭记》或课外读物中的任意一篇对出下联。上联:岳阳楼壮美雄奇,范仲淹抒写忧乐。下联:________,________。
下列哪项没有运用热胀冷缩原理?
最新回复
(
0
)