首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
自考
设三阶实对称矩阵A满足A2+2A=0,而且r(A)=2. 当k为何值时,kE3+A必为正定矩阵?
设三阶实对称矩阵A满足A2+2A=0,而且r(A)=2. 当k为何值时,kE3+A必为正定矩阵?
admin
2014-10-27
45
问题
设三阶实对称矩阵A满足A
2
+2A=0,而且r(A)=2.
当k为何值时,kE
3
+A必为正定矩阵?
选项
答案
kE
3
+A的特征值为k+λ,kE
3
+A为正定矩阵的充要条件是kE
3
+A有3个大于0的特征值,故当k>0时,k+λ>0,kE
3
+A必为正定矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/iSyR777K
本试题收录于:
线性代数(经管类)题库公共课分类
0
线性代数(经管类)
公共课
相关试题推荐
Neverbefore______sorapidlydevelopingasitistoday.
Thevolunteerswouldrathergobytrainthan______.
阅读下面段落,按要求回答问题。母令与少女同寝止。昧爽即来省问,操女红精巧绝伦。但善笑,禁之亦不可止;然笑处嫣然,狂而不损其媚,人皆乐之。邻女少妇,争承迎之。母择吉为之合卺,而终恐为鬼物。窃于日中窥之,形影殊无少异。至日,使华装行新妇礼;女笑极不
寻寻觅觅,冷冷清清,凄凄惨惨戚戚。乍暖还寒时候,最难将息。三杯两盏淡酒,怎敌他、晚来风急!雁过也,正伤心,却是旧时相识。满地黄花堆积,憔悴损,如今有谁堪摘?守着窗儿,独自怎生得黑!梧桐更兼细雨,到黄昏、点点滴滴。这次第,怎一个愁字了得!两个呼告句表现出
阅读《秋水》中的一段文字,回答问题:井蛙不可以语于海者,拘于虚也;夏虫不可以语于冰者,笃于时也;曲士不可以语于道者,束于教也。这段文字的主旨和三个层次的大意分别是什么?
设向量组α1=(1,一1,2,4)T,α2=(0,3,1,2)T,α3=(3,0,7,14)T,α4=(1,一1,2,0)T,求向量组的秩和一个极大线性无关组,并将其余向量用该极大线性无关组线性表示.
已知矩阵解矩阵方程AX=B
在Q(x,y,z)=λ(x2+y2+z2)+2xy+2xz一2yz中,问:λ取什么值时,Q为正定的?
计算行列式
设A为n阶方阵,且A2=A,证明:若A的秩为r<n,则A—E的秩为n一r,其中E是n阶单位矩阵.
随机试题
成就需要理论的提出者是()。
下列属于社会与文化环境的是【】
细胞外液的K+浓度明显降低时,将导致
男性,25岁,双上肢烫伤,急诊入院。创面的处理原则
美国某公司于2004年12月1日在美国就某口服药品提出专利申请并被受理,2005年5月9日就同一药品向中国专利局提出专利申请,要求享有优先权并及时提交了相关证明文件。中国专利局于2008年4月1日授予其专利。关于该中国专利,选项正确的是()
暴风雪及台风过后,应对高处作业安全设施逐一检查。
任免通知落款处由任免机关领导人亲笔签署(或代以签名章)。()
下列各现象中不属于法律事实的是()。
[A]Thatworldisnotyetonoffer.Butasemblanceofitmightbeoneday.Senescence:,thegeneraldwindlingofprowessexperie
下列Windows命令中,可以用于检测本机配置的域名服务器是否工作正常的命令是()。
最新回复
(
0
)