首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
外语
History of weather forecasting Early methods Almanacs connected the weather with the positions of different【L3
History of weather forecasting Early methods Almanacs connected the weather with the positions of different【L3
admin
2022-03-30
44
问题
History of weather forecasting
Early methods
Almanacs connected the weather with the positions of different【L31】________at particular times.
Invention of weather instruments
A hydrometer showed levels of【L32】________ (Nicholas Cusa 1450)
Temperature variations — first measured by a thermometer containing【L33】________(Galileo Galilei 1593)
A barometer indicated air pressure (Evangelista Torricelli 1645)
Transmitting weather information
The use of the【L34】________allowed information to be passed around the world.
Daily【L35】________ were produced by France.
Producing a weather forecast
Weather observation stations are found mostly at【L36】________around the country.
Satellite images use the colour orange to show【L37】________
The satellites give so much detail that meteorologists can distinguish a particular 【L38】________.
Information about the upper atmosphere is sent from instruments attached to a【L39】________
Radar is particularly useful for following the movement of【L40】________
【L34】
I work for the National Weather Service and as part of your course on weather patterns, I’ve been asked to talk to you about how we predict the weather. We’re so used to switching on our TVs and getting an up-to-date weather forecast at any time of day or night that we probably forget that this level of sophistication has only been achieved in the last few decades and weather forecasting is actually an ancient art. So I want to start by looking back into history.
The earliest weather forecasts appeared in the 1500s in almanacks, which were lists of information produced every year.
Their predictions relied heavily on making connections between the weather and where the planets were in the sky
on certain days. In addition, predictions were often based on information like if the fourth night after a new moon was clear, good weather was expected to follow.
But once basic weather instruments were invented, things slowly started to change. In the mid-fifteenth century a man called Nicholas Cusa, a German mathematician,
designed a hygrometer which told people how much humidity there was in the air.
To do this, Cusa put some sheep’s wool on a set of scales and then monitored the change in the wool’s weight according to the air conditions.
A piece of equipment we all know and use is the thermometer. Changes in temperature couldn’t really be measured until the Italian Galileo Galilei invented his thermometer in 1593. It wasn’t like a modern-day thermometer because
it had water inside it
instead of mercury. In fact, it wasn’t until 1714 that Gabriel Fahrenheit invented the first mercury thermometer. In 1643 another Italian called Evangelists Torricelli invented the first barometer which measured atmospheric pressure. This was another big step forward in more accurate weather predicting.
As time went on, during the 17th, 18th and 19th centuries, all these meteorological instruments were improved and developed and people in different countries began to record measurements relating to their local weather. However, in those days it was very difficult to send records from one part of the world to another so
it wasn’t possible for them to share their information until the electric telegraph became more widespread.
This meant that weather observations could be sent on a regular basis to and from different countries. By the 1860s, therefore, weather forecasts were becoming more common and accurate because they were based on observations taken at the same time over a wide area.
In 1863, France started building weather maps each day.
This hadn’t been done before, and other nations soon followed. So that was the start of national weather forecasting and I’ll now tell you how we at the National Weather Centre get the information we need to produce a forecast.
Even today, one of the most important methods we use is observations which tell us what the weather is doing right now. Observation reports are sent automatically from equipment at a number of weather stations in different parts of the country.
They are nearly all based at airports
although a few are in urban centres. The equipment senses temperature, humidity, pressure and wind speed and direction. Meteorologists also rely really heavily on satellites which send images to our computer screens. What we see on our screens is bright colours.
Orange represents dry air
and bright blue shows moisture levels in the atmosphere. The satellites are located 22,000 miles above the surface of the Earth and it’s amazing that despite that distance
it’s possible for us to make out an individual cloud
and follow it as it moves across the landscape.
In addition to collecting data from the ground, we need to know what’s happening in the upper levels of the atmosphere. So a couple of times a day from many sites across the country, we send radiosondes into the air.
A radiosonde is a box containing a package of equipment and it hangs from a balloon
which is filled with gas. Data is transmitted back to the weather station.
Finally, radar. This was first used over 150 years ago and still is. New advances are being made all the time and it is
one method for detecting and monitoring the progress of hurricanes.
Crucial information is shown in different colours representing speed and direction. Radar is also used by aircraft, of course.
All this information from different sources is put into computer models which are like massive computer programs. Sometimes they all give us the same story and sometimes we have to use our own experience to decide which is showing the most accurate forecast which we then pass on to you. So I hope next time you watch the weather forecast, you’ll think about how we meteorologists spend our time. And maybe I’ve persuaded some of you to study meteorology in more depth.
选项
答案
(electric) telegraph
解析
本题询问什么的使用使得信息得以在世界范围内传播。录音原文中的it wasn’t possible…to share their information是题目中allow in-formation to be passed…的同义表述,故空格处填入(electric)telegraph。
转载请注明原文地址:https://kaotiyun.com/show/ic8O777K
本试题收录于:
雅思听力题库雅思(IELTS)分类
0
雅思听力
雅思(IELTS)
相关试题推荐
LookatthefollowingnotesthathavebeenmadeaboutthematchesdescribedinReadingPassage1.Decidewhichtypeofmatch(A-
Youshouldspendabout20minutesonQuestions1-12whicharebasedonReadingPassage1below.SPOKENCORP
Lookatthethreerestaurantadvertisementsonthefollowingpage.Answerthequestionsbelowbywritingthelettersoftheappr
Youshouldspendabout20minutesonQuestions1-13whicharebasedonReadingPassage1below.AffordableArtArtpriceshavef
SECTION3Questions21-30Questions21Whichthreeguestsareontheradioprogramme?Writethecorrectletteronyouranswer
qualityeducation
Accordingtothespeaker,whyisitagoodtimeforD-l-Ypainting?
Completethenotesbelow.WriteNOMORETHANTWOWORDSAND/ORANUMBERforeachanswer.ExampleMIDDLEBURYLANGUAGESCHOOLCLASS
ricky45本题有关这位男士的邮箱。录音原文It’s…提示其后为答案。
随机试题
目前计算机病毒CIH可以破坏计算机的_______。
HistorianstendtotellthesamejokewhentheyaredescribinghistoryeducationinAmerica.It’stheone【56】theteacherstandin
小儿2岁时发育停滞,面容粗糙,尿黏稠,尿检验糖胺聚糖(黏多糖)阳性,糖胺聚糖见于下列哪种成分
患儿,7岁。急性肾炎,血压19/13kPa(140/100mmHg),水肿重,尿量明显减少,呼吸困难不能平卧,心率:140次/分,心音低钝,肝肋下2cm。X线胸片:肺纹理增强。该患儿可能出现
A.肺脓肿B.支气管肺癌C.细菌性肺炎D.肺囊肿继发感染E.浸润性肺结核X线显示炎性浸润逐渐吸收,可有片块区域吸收较早,呈现“假空洞”征的病变是
患者,男,46岁。因高位小肠瘘入院,为保护局部皮肤,遵医嘱在瘘口处放置持续负压吸引管和滴液管。负压的压力应当为()。
某企业本期以28万元的价格,转让出售以前年度接受捐赠酌设备一台。该设备的原价为30万元,已提折旧5万元。本期出售该设备影响当期损益的金额为( )万元。
《革命练习曲》的作者是()。
A.So,whatareyougoingtodowiththemoney?B.Youhavelotsofmoney.C.HowmuchdoIoweyou?Joshua:Dad.Allowanceday
America’sfirstladyofsoftwareFoursuchawealthycouple,PamLopkerandhusbandKarllivein(29)style.Theyhavea
最新回复
(
0
)