首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=的特征值有重根,试求正交矩阵Q,使QTAQ为对角形.
设矩阵A=的特征值有重根,试求正交矩阵Q,使QTAQ为对角形.
admin
2016-10-20
40
问题
设矩阵A=
的特征值有重根,试求正交矩阵Q,使Q
T
AQ为对角形.
选项
答案
A的特征多项式 [*] =(λ-2)[λ
2
+(3-a)λ-(3a+20)], 由于判别式(3-a)
2
+4(3a+20)=0没有实数根,即λ
2
+(3-a)λ-(3a+20)≠(λ-k)
2
,所以只能λ=2是重根.于是λ
2
+(3-a)λ-(3a+20)必有λ-2的因式,因此由 22+2(3-a)-(3a+20)=0,得a=-2. 从而得到矩阵A的特征值是λ
1
=λ
2
=2,λ
3
=-7. 对于λ=2,由(2E-A)x=0,即[*] 得到线性无关的特征向量α
1
=(-2,1,0)
T
,α
2
=(2,0,1)
T
.用Schmidt正交化方法,先正交化,有 [*] 再将β
1
,β
2
单位化,得 [*] 对于λ=-7,由(-7E-A)x=0,即[*] 得特征向量α
3
=(1,2,-2)
T
,单位化为[*] 那么,令Q=(γ
1
,γ
2
,γ
3
)=[*]
解析
因为Q是正交矩阵,有Q
T
=Q
-1
,故Q
T
AQ=A,即Q
-1
AQ=A.为此,应当求矩阵A的特征向量.
转载请注明原文地址:https://kaotiyun.com/show/jYT4777K
0
考研数学三
相关试题推荐
设A,B是同阶正定矩阵,则下列命题错误的是().
下列反常积分是否收敛?如果收敛求出它的值:
某企业为生产甲、乙两种型号的产品投入的同定成本为10000(万元).设该企业生产甲、乙两种产品的产量分别为x(件)和y(件),且这两种产品的边际成本分别为20+x/2(万元/件)与6+y(万元/件).求总产量为50件且总成本最小时甲产品的边际成本,并解
某企业为生产甲、乙两种型号的产品投入的同定成本为10000(万元).设该企业生产甲、乙两种产品的产量分别为x(件)和y(件),且这两种产品的边际成本分别为20+x/2(万元/件)与6+y(万元/件).
某厂家生产的一种产品同时在两个市场上销售,售价分别为p1,p2,需求函数分别为q1=24-0.2p1,q2=10-0.05p2,总成本函数为C=35+40(q1+q2),问厂家如何确定两个市场的销售价格能使其获得总利润最大?最大利润为多少?
某公司可通过电台及报纸两种方式做销售某种商品的广告,根据统计资料,销售收入R(万元)与电台广告费用x1(万元)及报纸广告费用x2(万元)之间的关系有如下经验公式:R=15+14x1+32x2-8x1x2-2x12-10x22,在广告费用不限的情况下,求最优
设生产某种产品必须投入两种要素,x1和x2分别为两要素的投入量,Q为产出量,若生产函数为Q=2x1αx2β,其中α,β为正常数,且α+β=1.假设两种要素的价格分别为ρ1和ρ2,试问:当产出量为12时,两要素各投入多少可以使得投入总费用最小?
一生产线生产的产品成箱包装,每箱的重量是随机的.假设每箱平均重50千克,标准差为5千克.若用最大载重量为5吨的汽车承运,试利用中心极限定理说明每辆车最多可以装多少箱,才能保障不超载的概率大于0.977.(φ(2)=0.977,其中φ(x)是标准正态分布函数
随机试题
焊接电流为600A,电弧电压UH=38V。外电路电阻为0.03Ω,求此时电焊机端电压。
两个避难层之间的高度不大于()。
在编制现金流量表时,所谓的“直接法”和“间接法”是针对()而言的。
相对于其他组织结构,矩阵制组织结构对()有利。
思维的不可逆性和自我中心在皮亚杰所描述的()阶段表现得最为明显。
毛泽东在《矛盾论》中指出:矛盾问题的精髓是()。
①尽管海外屯田存有各种风险,但它能在一定程度上减轻为保障国内粮食供给而对耕地施加的压力。因此,我国也应积极探索海外屯田②印度也于2008年开始在巴拉圭、乌拉圭、巴西等国展开租田谈判③2007年的粮食危机又引发了新一轮的“海外屯田潮”
乙于2020年10月1日起就职于甲公司,但双方仅口头上订立了为期3年的劳动合同,并约定乙每月工资为4000元。若甲公司不与乙签订书面劳动合同,则2020年11月1日起,甲公司应当每月向乙支付工资()元。
在最坏情况下,冒泡排序的时间复杂度为【】。
Davisonkneltdownclosetothebottomofthebasementstairs.Hewassavedforthemomentbythethickfogwhichcoveredthest
最新回复
(
0
)