首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,且α1=(1,一1,1)T是A的属于λ1的一个特征向量。记B=A5一4A3+E,其中E为3阶单位矩阵 (Ⅰ)验证αi是矩阵B的特征向量,并求B的全部特征值与特征向量; (Ⅱ)求矩阵B。
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,且α1=(1,一1,1)T是A的属于λ1的一个特征向量。记B=A5一4A3+E,其中E为3阶单位矩阵 (Ⅰ)验证αi是矩阵B的特征向量,并求B的全部特征值与特征向量; (Ⅱ)求矩阵B。
admin
2015-09-14
44
问题
设3阶实对称矩阵A的特征值λ
1
=1,λ
2
=2,λ
3
=一2,且α
1
=(1,一1,1)
T
是A的属于λ
1
的一个特征向量。记B=A
5
一4A
3
+E,其中E为3阶单位矩阵
(Ⅰ)验证α
i
是矩阵B的特征向量,并求B的全部特征值与特征向量;
(Ⅱ)求矩阵B。
选项
答案
(Ⅰ)记矩阵A的属于特征值λ
i
的特征向量为α
i
(i=1,2,3),由特征值的定义与性质,有 A
k
α
i
—λ
i
k
α
i
(i=1,2,3,k=1,2,…),于是有 Bα
1
=(A
5
一4A
3
+E)α
1
=(λ
1
5
一4λ
1
解析
本题主要考查特征值与特征向量的定义与性质、矩阵相似对角化的概念与应用。
本题中方阵B=f(A)为方阵A的多项式,其中多项式f(t)=t
5
一4t
3
+1.我们知道,若λ为方阵A的一个特征值,则f(λ)为f(A)=B的一个特征值。但是,为什么能由A的全部特征值为λ
1
,λ
2
,λ
3
而断言f(λ
1
),f(λ
2
),f(λ
3
)为B的全部特征值呢?对此问题,可有以下几种推导方法:
(1)由于属于互不相同特征值的特征向量线性无关,知向量组α
1
,α
2
,α
3
线性无关,从而知α
2
,α
3
线性无关,再由Bα
3
=α
2
,Bα
3
=α
3
,知1为B的特征值,且对应的线性无关特征向量至少有2个,故知1至少为B的二重特征值。又因3阶矩阵B的全部特征值(重特征值按重数计算)有且仅有3个,故知B的全部特征值为一2,1,1.
(2)由3阶矩阵A有3个互不相同的特征值1,2,一2,或由A为实对称矩阵,知A可相似对角化,即存在可逆矩阵Q,使
于是有
Q
-1
BQ=Q
-1
(A
5
一4A
3
+E)Q=Q
-1
A
5
Q一4Q
-1
A
3
Q+E
=(Q
-1
AQ)
5
一4(Q
-1
AQ)
3
+E=D
5
一4D
3
+E
即矩阵B与对角矩阵M相似,由于相似矩阵有相同的特征值,故知B的全部特征值为一2,1,1.
(3)也可以直接利用下面更为一般的结论:设n阶矩阵A(不一定为实对称矩阵)的全部特征值为λ
1
,λ
2
,…,λ
n
,则对于任一多项式f(t),n阶矩阵,(A)的全部特征值为f(λ
1
),f(λ
2
),…,f(λ
n
)。
另外,需要指出,由方程x
1
一x
2
+x
3
=0所求基础解系,即B的属于特征值1的线性无关特征向量虽然不是唯一的,从而所得相似变换矩阵P不是唯一的,但由B=Pdiag(一2,1,1)P
-1
所计算出的矩阵B却是唯一的。例如,也可由x
1
—x
2
+x
3
=0解得B的属于特征值1的线性无关特征向量为(1,1,0)
T
,(一1,1,2)
T
,从而可取相似对角化的变换矩阵为
转载请注明原文地址:https://kaotiyun.com/show/jqU4777K
0
考研数学三
相关试题推荐
邓小平理论是马克思列宁主义基本原理与当代中国实际和时代特征结合的产物,是马克思列宁主义、毛泽东思想的继承和发展,是全党全国人民集体智慧的结晶。把邓小平理论确立为中国共产党的指导思想并写入党章是在
生态文明建设是指人类在利用和改造自然的过程中,主动保护自然,积极改善和优化人与自然的关系,建设健康有序的生态运行机制和良好的生态环境。生态文明的核心是
实践充分证明,人民代表大会制度是符合中国国情和实际、体现社会主义国家性质、保证人民当家作主、保障实现中华民族伟大复兴的好制度。在中国实行人民代表大会制度是
二次型f(x1,x2,x3)=2x1x2+2x1x3+2x2x3的规范形为().
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
设向量组α1,α2,…,αs线性无关,作线性组合β1=α1+μ1αs,β2=α2+μ2αs,…,βs-1=αs-1+μs-1αs,则向量组β1,β2,…,βs-1线性无关,其中s≥2,μi为任意实数.
设n阶实对称矩阵A满足条件A2+6A+8E=O,且A+tE是正定矩阵,则t的取值范围为_______.
设n元二次型f(x1,x2,…,xn)=XTAX,其中AT=A.如果该二次型通过可逆线性变换X=CY可化为f(y1,y2,…,yn)=YTBY,则以下结论不正确的是().
设向量α=(α1,α2,…,αn)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT.求:A2.
设n阶矩阵A的元素全为1,则A的n个特征值是________.
随机试题
Iunderstandthetwofactorsthatcontributedtomydownfall:______(缺乏职业目标和缺乏自信).
在财产保险合同有效期内,保险标的的危险程度显著增加的,被保险人应当按照合同约定及时通知()。
根据《碾压式土石坝施工技术规范》DL/T5129--2001,筑坝材料施工试验项目包括()。
背景A公司参与远离所在地炼钢厂的机电安装工程总承包的投标,投标前做了如下工作:(1)分析了招标文件工程范围,本工程含机械设备安装、电气及自动化系统安装、钢结构及非标准件制作安装、工业给水排水施工、防腐及保温工程、筑炉工程。并分析了本公司
某公司上年年末支付每股股息2元,预期回报率为15%,未来3年中超常态增长率为20%,随后的增长率为8%,则股票的价值为()。
下列组织结构类型中,由专门从事某项工作的项目小组发展而来的是()。
下列关于股份支付的会计处理中,正确的有()。
甲公司为增值税一般纳税人,于2015年12月5日以一批商品换入乙公司的一项非专利技术,该交换具有商业实质。甲公司换出商品的账面价值为80万元,不含增值税的公允价值为100万元,增值税额为17万元;另收到乙公司补价10万元。甲公司换入非专利技术的原账面价值为
阅读“青藏地区”教学片断,回答问题。教师提出一个问题:“青藏地区”是什么样的?【活动1】在青藏地区示意图上填注以下地理事物(1)填注主要经线、纬线的度数。(2)填注喜马拉雅山脉、昆仑山脉、祁连山脉、横断山脉、塔里木河、金沙江、塔里木盆地。【活动2
现在公务员面临的工作情况复杂多变,需要我们具备理性的判断及处理能力,请你结合自身经历,列举一件你遇到过的危急事情,并说明你是如何处理的。
最新回复
(
0
)