首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在区间[0,1]上( )
设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在区间[0,1]上( )
admin
2018-04-14
62
问题
设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在区间[0,1]上( )
选项
A、当f’(x)≥0时,f(x)≥g(x)。
B、当f’(x)≥0时,f(x)≤g(x)。
C、当f"(x)≥0时,f(x)≥g(x)。
D、当f"(x)≥0时,f(x)≤g(x)。
答案
D
解析
方法一:令F(x)=g(x)-f(x)=f(0)(1-x)+f(1)x-f(x),则F(0)=F(1)=0,
且
F’(x)=-f(0)+f(1)-f’(z),F"(z)=-f"(x),
若f"(x)≥0,则F"(x)≤0,曲线F(x)在[0,1]上是向上凸的。又F(0)=F(1)=0,所以当x∈[0,1]时,F(x)≥0,从而g(x)≥f(x)。故选D。
方法二:本题采用第一条思路更简便,首先将函数变形为
g(x)=[f(1)-f(0)]x+f(0),
易知直线g(x)过曲线f(x)上的两个点(0,f(0)),(1,f(1)),则直线g(x)是曲线f(x)上的一条割线,当f"(z)≥0时,曲线f(x)为凹函数,连接曲线上任意两点的直线在曲线的上方,故g(x)≥f(x),故选D。
转载请注明原文地址:https://kaotiyun.com/show/k3k4777K
0
考研数学二
相关试题推荐
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则fˊ(1)=().
因为y=ex在实数域内严格单调增加,又在区间[-2,-1]上1≤-x3≤8,-8≤x3≤-1,所以在区间[-2,-1]上e≤e-x3≤e8,e-8≤ex3≤e-1<e,由定积分的性质知[*]
设周期函数f(x)在(﹣∞,+∞)内可导,周期为4,又则曲线y=f(x)在点(5,f(5))处的切线的斜率为().
函数y=x+2cosx在[0,π/2]上的最大值为________.
若f(x)的导函数是sinx,则f(x)有一个原函数为().
这是求隐函数在某点的全微分.这里点(1,0,-1)的含意是z=z(1,0)=-1.[*]
设函数f(x)在(-∞,+∞)内有定义,xo≠0是函数f(x)的极大值点,则().
设z=f(u,v,x),u=φ(x,y),v=ψ(y),求复合函数z=f(φ(x,y),ψ(y),x)的偏导数
随机试题
关于出版物预告,说法错误的是()。
尿液渗透量测定,与尿中溶质的
可不予拔除的断根是
关于我国宪法的修改,下列哪一说法是错误的?(2010年试卷一第23题)
背景资料:××年5月10日,某公路工程处第三项目部在某立交桥施工期间,对立交桥作业区域内原有厂房拆除工程施工中,发生了一起因被拆除的建筑物坍塌导致2人死亡的事故。某建设单位委托第三项目部进行2000m2厂房拆除工程的施工,厂房是砖混结构的两层楼房,要求6月
个体在解决问题的过程中表现为搜集或综合信息与知识,运用逻辑规律,缩小解答范围,直至找到唯一正确的解答的认知方式称为()。
按照智商的检测标准,高智商的儿童智商必须达到()。
一般情况下,民族自治地方名称的排序依次是()。
恰好有两位数字相同的三位数共有多少个?
[A]Communication[B]Identity[C]Loss[D]Practicalities[E]Rehearsing[F]SolutionsandPrevention
最新回复
(
0
)