首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在区间[0,1]上( )
设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在区间[0,1]上( )
admin
2018-04-14
37
问题
设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在区间[0,1]上( )
选项
A、当f’(x)≥0时,f(x)≥g(x)。
B、当f’(x)≥0时,f(x)≤g(x)。
C、当f"(x)≥0时,f(x)≥g(x)。
D、当f"(x)≥0时,f(x)≤g(x)。
答案
D
解析
方法一:令F(x)=g(x)-f(x)=f(0)(1-x)+f(1)x-f(x),则F(0)=F(1)=0,
且
F’(x)=-f(0)+f(1)-f’(z),F"(z)=-f"(x),
若f"(x)≥0,则F"(x)≤0,曲线F(x)在[0,1]上是向上凸的。又F(0)=F(1)=0,所以当x∈[0,1]时,F(x)≥0,从而g(x)≥f(x)。故选D。
方法二:本题采用第一条思路更简便,首先将函数变形为
g(x)=[f(1)-f(0)]x+f(0),
易知直线g(x)过曲线f(x)上的两个点(0,f(0)),(1,f(1)),则直线g(x)是曲线f(x)上的一条割线,当f"(z)≥0时,曲线f(x)为凹函数,连接曲线上任意两点的直线在曲线的上方,故g(x)≥f(x),故选D。
转载请注明原文地址:https://kaotiyun.com/show/k3k4777K
0
考研数学二
相关试题推荐
设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1,试证必存在ξ∈(0,3),使fˊ(ξ)=0.
因为y=ex在实数域内严格单调增加,又在区间[-2,-1]上1≤-x3≤8,-8≤x3≤-1,所以在区间[-2,-1]上e≤e-x3≤e8,e-8≤ex3≤e-1<e,由定积分的性质知[*]
设周期函数f(x)在(﹣∞,+∞)内可导,周期为4,又则曲线y=f(x)在点(5,f(5))处的切线的斜率为().
设函数g(x)可微,h(x)=e1+g(x),hˊ(1)=1,gˊ(1)=2,则g(1)等于().
本题为“1x”型未定式,除可以利用第二类重要极限进行计算或化为指数函数计算外,由于已知数列的表达式,也可将n换为x转化为函数极限进行计算.一般[*]
函数y=x+2cosx在[0,π/2]上的最大值为________.
曲线y=x(x-1)(2-x)与x轴所围成的图形的面积可表示为().
设函数f(x)=x.tanx.esinx,则f(x)是().
若f(x)的导函数是sinx,则f(x)有一个原函数为().
设函数f(x)连续,则下列函数中,必为奇函数的是().
随机试题
甲将一幅名画出售给乙,并约定1个月后交付。丙知道甲出售名画后,愿出比乙更高的价格购买。甲便将该画卖给丙,并当场交付该画与丙,但丙未付款。在此种情况下,下列判断中正确的是()。
治疗胁痛瘀血阻络证,首选的方剂是
初步诊断宫体癌,哪项体征最支持诊断:为进一步确诊,需作哪项检查:
根据《建筑工程建筑面积计算规范》(GB/T50353—2013),关于建筑面积计算说法正确的是()。
关于审核报告的编制、批准和分发,下列说法正确的是()。
下列是我国古代的一些历史文化名人,其中属于两汉时期的是()。①老子②屈原③华佗④孔子⑤李斯⑥孙武⑦张衡⑧董仲舒
根据皮亚杰的理论,若儿童出现守恒概念,并逐渐学会从别人的观点看问题,能凭借具体形象的事物进行逻辑推理,则儿童的发展大体上所处的阶段是()。
红酒:葡萄:酒窖
有以下程序段:intk=Owhile(k=1)k++;while循环执行的次数是()。
Youthisnotamatteroftimebutamatterofself-improvement,bothphysicallyandmorally.Beingagoodyouth,oneshouldhave
最新回复
(
0
)