首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0.证明对任何a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1).
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0.证明对任何a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1).
admin
2016-06-27
33
问题
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0.证明对任何a∈[0,1],有∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx≥f(a)g(1).
选项
答案
设 F(x)=∫
0
x
g(t)f’(t)dt+∫
0
1
f(t)g’(t)dt一f(x)g(1),则F(x)在[0,1]上的导数连续,并且 F’(x)=g(x)f’(x)-f’(x)g(1)=f’(x)[g(x)一g(1)]. 由于x∈[0,1]时,f’(x)≥0,g’(x)≥0,因此F’(x)≤0,即F(x)在[0,1]上单调递减. 注意到 F(1)=∫
0
1
g(t)f’(t)dt+∫
0
1
f(t)g’(t)dt一f(1)g(1), 而 ∫
0
1
g(t)f’(t)dt=∫
0
1
g(t)df(t)=g(t)f(t)|
0
1
一∫
0
1
f(t)g’(t)dt =f(1)g(1)一∫
0
1
f(t)g’(t)dt, 故F(1)=0. 因此x∈[0,1]时,F(x)≥F(1)=0,由此可得对任何a∈[0,1],有 ∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx≥f(a)g(1).
解析
转载请注明原文地址:https://kaotiyun.com/show/kFT4777K
0
考研数学三
相关试题推荐
1917年俄国爆发的十月革命是一个具有划时代意义的世界性的历史事件。它推动着中国的先进分子把自己的目光从西方转向东方,从资产阶级民主主义转向社会主义;昭示着人们,资本主义制度并不是永恒的,无产阶级和其他劳动群众一旦觉醒、组织起来,完全可以依靠自身的力量创造
科技创新始于技术、成于资本,这是近几十年全球科技创新一个突出的特征。科技创新创业的风险特征不同于成熟型产业经济行为,必须高度依赖资本,因为靠自身的积累和银行贷款往往是不现实的。而货币资本作为虚拟资本是每个企业的推动力和持续动力。货币资本是(
马克思有一句名言:“批判的武器当然不能代替武器的批判,物质力量只能用物质力量来摧毁;但是理论一经群众掌握,也会变成物质力量。”马克思主义主要由哲学、政治经济学、科学社会主义三大组成部分构成。这三大组成部分分别来源于德国古典哲学、英国古典政治经济学、法国空想
确保到2020年我国现行标准下农村贫困人口实现脱贫,贫困县全部摘帽,解决区域性整体贫困的重点是()。
从[0,1]中随机取两个数,求两数之和小于6/5的概率.
求下列初值问题的解:(1)y3dx+2(x2-xy2)dy=0,y|x=1=1;(2)y〞-a(yˊ)2=0,y|x=0=0,yˊ|x=0=-1;(3)2y〞-sin2y=0,y|x=0=π/2,yˊ|x=0=1;(4)y〞+2yˊ
计算下列定积分:
利用等价无穷小的代换性质,求下列极限:
设f(x)和φ(x)在(-∞,+∞)内有定义,f(x)为连续函数,且f(x)≠0,φ(x)有间断点,则().
随机试题
(Para.1,Passage4)Flyingoveradesertareainanairplane,twoscientistslookeddownwiththeirtrainedeyesattreesandb
有关表皮样囊肿的描述,错误的是
患者,男,15岁。5天来双膝关节、肌肉疼痛酸楚,屈伸不利,疼痛呈游走性,初起有恶风、发热,舌苔薄白,脉浮。其治疗应首选的方剂是
下列总体管线敷设时所遵循的原则中,哪项是错误的?[2006-82]
海湾取样位置的选择,当污水排放量为66000m3/d,对于二级水环境影响评价,每()k2布设一个取样位置。
建立安全生产检查制度的作用在于( )。
行政处罚的形式包括罚款、没收违法所得、责令停产停业、行政拘留等。()
2001年全国人大常委会作出解释:《刑法》第四百一十条规定的“非法批准征用、占用土地”,是指非法批准征用、占用耕地、林地等农用地以及其他土地。对该法律解释,下列说法正确的是
已知η1,η2,η3,η4是齐次方程组AX=0的基础解系,则此方程组的基础解系还可以是
当前工资表中有108条记录,当前记录号为8,用SUM命令计算工资总和时,若缺省[范围]短语,则系统将______。
最新回复
(
0
)