首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0.证明对任何a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1).
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0.证明对任何a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1).
admin
2016-06-27
34
问题
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0.证明对任何a∈[0,1],有∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx≥f(a)g(1).
选项
答案
设 F(x)=∫
0
x
g(t)f’(t)dt+∫
0
1
f(t)g’(t)dt一f(x)g(1),则F(x)在[0,1]上的导数连续,并且 F’(x)=g(x)f’(x)-f’(x)g(1)=f’(x)[g(x)一g(1)]. 由于x∈[0,1]时,f’(x)≥0,g’(x)≥0,因此F’(x)≤0,即F(x)在[0,1]上单调递减. 注意到 F(1)=∫
0
1
g(t)f’(t)dt+∫
0
1
f(t)g’(t)dt一f(1)g(1), 而 ∫
0
1
g(t)f’(t)dt=∫
0
1
g(t)df(t)=g(t)f(t)|
0
1
一∫
0
1
f(t)g’(t)dt =f(1)g(1)一∫
0
1
f(t)g’(t)dt, 故F(1)=0. 因此x∈[0,1]时,F(x)≥F(1)=0,由此可得对任何a∈[0,1],有 ∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx≥f(a)g(1).
解析
转载请注明原文地址:https://kaotiyun.com/show/kFT4777K
0
考研数学三
相关试题推荐
历史虚无主义思潮,认为中国传统道德从整体上来说在今天已经失去了价值和意义,不能满足我国现代化建设的需要,必须从整体上予以全盘否定。这一思潮()。
先进的生产关系之所以能够促进生产力的发展,就在于()。
从20世纪70年代至今,商务印书馆先后出版了多个版本的《新华字典》。删除了一些旧的词条,增加了一些新的词条,并对若干词条的词义做了修改。例如1971年版对“科举”这个词条的解释是:“从隋唐到清代的封建王朝为维护其反动统治而设的分科考选文武官吏后备人员的制度
列宁指出:“群众是划分为阶级的……在通常情况下,在多数场合,至少在现代的文明国家内,阶级是由政党来领导的。政党通常是由最有威信、最有影响、最有经验、被选出担任最重要职务而称为领袖的人们所组成的比较稳定的集团来主持的。”这一论断说明()。
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
验证函数u=e-kn2tsinnx满足热传导方程ut=kuxx.
求下列函数的导数:(1)y=2x4-3/x2+5;(2)y=e2x+2x+7;(3)y=ln2x+2lgx;(4)y=3secx+cotx;(5)y=sinx·tanx;(6)y=x3lnx;(7)y=exsinx;
本题考察有趣的雪花曲线.雪花曲线是这样作出来的:以边长为1的等边三角形作为基础,第一步:将每边三等分,以每边的中间一段为底各向外作一个小的等边三角形,随后把这三个小等边三角形的底边删除.第二步:在第一步得出的多边形的每条边上重复第一步,如此无限地继续下去,
如果函数f(x)当x→x。时极限为A,证明;并举例说明:如果当x→x。时|f(x)|有极限,f(x)未必有极限.
设f(x)在区间[-a,a](a>0)上有二阶连续导数,f(0)=0证明在[-a,a]上至少存在一点η,使a3f"(η)=[*]
随机试题
“凡是能言语、能思维、能制造和使用工具的动物都是人。”这属于思维过程中的()
用DDD进行药物利用研究的优点不包括:
甲状腺腺泡细胞分泌的激素是肾上腺皮质球状带分泌的激素是
某城镇污水处理厂的平均流量为1.5m3/s,总变化系数Kz=1.3。取曝气沉沙池最大时流量的停留时间为2min,则所需曝气沉沙池的总容积为()。
投资主体是为了获得未来的货币增值或收益而投资,投资是()。
下列应税消费品同时适用定额和定率税率的是()。
法人对行政机关作出的冻结财产等行政强制措施不服的,应先向人民法院提起行政诉讼,人民法院不予受理的,才可申请行政复议。()
2009—2013年我国货物对外贸易为()。
一位美国学者指出,第二次鸦片战争期间,美国只是“给予联军以道义上的支持和合作”,却在战后获得了很多权益。其中一项权益是:
儿童期学习的特点主要表现在()方面。
最新回复
(
0
)