首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
n维向量组(Ⅰ)α1,α2,…,αr可以用n维向量组(Ⅱ)β1,β2,…,βs线性表示.
n维向量组(Ⅰ)α1,α2,…,αr可以用n维向量组(Ⅱ)β1,β2,…,βs线性表示.
admin
2017-06-08
101
问题
n维向量组(Ⅰ)α
1
,α
2
,…,α
r
可以用n维向量组(Ⅱ)β
1
,β
2
,…,β
s
线性表示.
选项
A、如果(Ⅰ)线性无关,则r≤s.
B、如果(Ⅰ)线性相关,则r>s.
C、如果(Ⅱ)线性无关,则r≤s.
D、如果(Ⅱ)线性相关,则r>s.
答案
A
解析
C和D容易排除,因为(Ⅱ)的相关性显然不能决定r和s的大小关系的.
A是定理3.8的推论的逆否命题.根据该推论,当向量组(Ⅰ)可以用(Ⅱ)线性表示时,如果r>s,则(Ⅰ)线性相关.因此现在(Ⅰ)线性无关,一定有r≤s.
B则是这个推论的逆命题,是不成立的.
也可用向量组秩的性质来说明A的正确性:
由于(Ⅰ)可以用(Ⅱ)线性表示,有
r(Ⅰ)≤r(Ⅱ)≤s
又因为(Ⅰ)线性无关,所以r(Ⅰ)=r.于是r≤s.
转载请注明原文地址:https://kaotiyun.com/show/l0t4777K
0
考研数学二
相关试题推荐
设A,B为同阶可逆矩阵,则().
设F(x,y)是一个二维随机向量(X,Y)的分布函数,x1
设函数,当k为何值时,f(x)在点x=0处连续.
当x→0时,下列变量中哪些是无穷小量?哪些是无穷大量?哪些既不是无穷小量也不是无穷大量?
设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2-4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.问k为何值时,f(x)在x=0处可导.
已知y=x/lnx是微分方程y’=y/x+φ(x/y)的解,则φ(x/y)的表达式为
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求正交矩阵Q和对角矩阵A,使得QTAQ=A.
设n,元线性方程组Ax=b,其中当a为何值时,该方程组有唯一解,并求x1;
设矩阵A与B相似,且求a,b的值;
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示.将β1,β2,β3用α1,α2,α3线性表示.
随机试题
将调查总体按一定的标准分成若干群,然后在其中随机抽取部分群体单位进行调查的方法是()
妊娠合并肝炎正确的护理是( )。
患者男,9岁。因“发现双颈部包块1个月余”入院。患儿近1个月来双颈部包块,进行性增大,以左侧为甚,无发热、咳嗽、胸闷、腹痛、乏力、消瘦、盗汗等症状。入院查胸片,肝脾B超均未见异常,颈部淋巴结活检病理报告:霍奇金病(淋巴细胞为主型),骨髓活检示幼稚淋巴细胞占
计划生育技术服务机构中的医师资格取得及管理执行
A、氟哌利多B、舒必利C、氟哌噻吨D、氯氮平E、五氟利多禁用于心功能不全患者的躁狂症的药物是
设计方的项目管理工作主要在( )进行。
居民企业甲公司主要从事日化产品的生产和销售,2018年有关涉税事项如下:(1)为了推广新型洗涤剂,公司推出了“买一赠一”的促销活动,凡购买一件售价40元(不含税)新型洗涤剂的,附赠一瓶原价10元(不含税)的洗洁精。公司按照每件40元确认了新型洗涤剂的销售
在总结某知名企业集团破产的过程中,人们发现如下情况:资料一:为了满足公司大规模扩张的需要、把资金从上市公司转移出来,集团采取以上市公司存款为大股东贷款担保的方式“套钱”。在难以得到上市公司过半数董事同意的情况下,集团制造虚假的上市公司董事会决议:一
《食物成分表2002》中的食物编码有6位,最后3位是()
请在【答题】菜单下选择【进入考生文件夹】命令,在考生文件夹下打开文本文件“WORD素材.txt”,按照题目要求完成下列操作,并以文件名“WORD.docx”保存结果文档。注意:以下的文件必须都保存在考生文件夹下。张静是一名大学本科三年级学牛,经多方面了
最新回复
(
0
)