首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[a,b]上连续,且在(a,b)内可微,又对于(a,b)内的x,有g′(x)≠0,则在(a,b)内存在一个ξ,使
设f(x),g(x)在[a,b]上连续,且在(a,b)内可微,又对于(a,b)内的x,有g′(x)≠0,则在(a,b)内存在一个ξ,使
admin
2016-01-25
86
问题
设f(x),g(x)在[a,b]上连续,且在(a,b)内可微,又对于(a,b)内的x,有g′(x)≠0,则在(a,b)内存在一个ξ,使
选项
答案
令 F(x)=[f(x)-f(a)][g(b)一g(x)]. 下面对F(x)验证其满足罗尔定理的全部条件,显然有 F(a)=0,F(b)=0. 又F(x)在[a,b]上连续,在(a,b)内可导,由罗尔定理知,存在ξ∈(a,b),使 F′(ξ)=0, 即 f′(ξ)[g(b)一g(ξ)]一[f(ξ)-f(a)]g′(ξ)=0. 由g′(ξ)≠0得到 [*]
解析
先找出辅助函数F(x).下面用凑导数法求之.将待证等式中的ξ改为x,式
f′(x)[g(b)一g(x)]一g′(x)[f(x)-f(a)]=0, ②
即 [f(x)一f(a)]′[g(b)一g(x)]+[f(x)一f(a)].[g(b)一g(x)]′=0,
亦即 {[f(x)f(a)][g(b)一g(x)]}′=0
因而应作 F(x)=[f(x)一f(a)][g(b)一g(x)].
转载请注明原文地址:https://kaotiyun.com/show/lKU4777K
0
考研数学三
相关试题推荐
弘扬爱国主义精神,就要深入了解中华民族5000多年源远流长的文明史,不断加深对祖国悠久历史、灿烂文化的认同,从世代积累沉淀的中华文化中汲取营养和智慧,自觉延续文化基因、萃取思想精华。这是因为,文化传统是
经济基础决定上层建筑,上层建筑对经济基础具有反作用。上层建筑对经济基础的反作用集中表现在
当前我国发展还面临一系列突出矛盾和挑战,前进道路上还有不少困难和问题。破解发展中面临的难题,化解来自各方面的风险挑战,推动经济社会持续健康发展,必须依靠全面深化改革。全面深化改革必须坚持
浙江省武义县北中南三个区块资源禀赋差异较大,产业分布特色明显。从2000年左右开始,武义县提出了“北部机声隆隆,中部车水马龙,南部满目葱茏”的空间发展布局。经过近二十年的接棒努力,武义县较好形成了北部工业经济活跃、中部旅游服务业兴旺、南部生态保护成效显著的
新民主主义经济纲领中,实行保护民族工商业的政策是因为
建设现代化经济体系,就是坚持质量第一、效益优先,推动经济发展质量变革、效率变革、动力变革,提高全要素生产率,不断增强我国经济创新力和竞争力。具体地说,就是深化供给侧结构性改革、加快建设创新型国家、实施乡村振兴战略、实施区域协调发展战略、加快完善社会主义市场
记者在采访2015年诺贝尔生理学或医学奖的中国女药学家屠呦呦时问她:“你在小鼠和猴子身上测试了青蒿素,证明它是有效的之后,你自己也服了药。你害怕吗?”屠呦呦答:“我们担心药物是否安全。我和两位同事服了药,表明药不会死人。我认为这是我作为药物化学家的责任和工
将13个分别写有A、A、A、C、E、H、I、I、M、M、N、T、T的卡片随意地排成一行,求恰好排单词“MATHEMATICIAN”的概率.
设f(x)是处处可导的奇函数,证明:对任-b>0,总存在c∈(-b,b)使得fˊ(c)=f(b)/b.
讨论函数在点x=0处的连续性.
随机试题
下列属于按市场中交易的标的物划分的金融市场是
担任一定领导职务的公务员的任职一般不需要
为避免打乱正常的领导隶属关系和工作业务联系,党政机关要严格控制()
关于下颌磨牙髓腔形态的叙述,错误的是
男,44岁,反复发作右肾绞痛1年,两年来常于进食肉类尤其是动物内脏后,出现脚趾关节红肿疼痛,泌尿系统平片检查未发现异常,对病人应进行下列哪项检查以明确诊断
女婴,2个月,拒食、吐奶、嗜睡3天。查体:面色青灰。前囟紧张,脐部少许脓性分泌物,为明确诊断,最关键的检查是
为保障车辆安全运行,路面的性能除应满足强度和刚度的要求外,还应满足的性能要求有()。
最新全球超级计算机500强排行榜榜单,中国国防科学技术大学研制的()以比第二名——美国的“泰坦”陕近一倍的速度再度登上榜首。
EgyptianwinehasanextensivehistorywithinthehistoryofEgypfiancivilization.Grapeswerenot【C1】______tothelandscapeof
Macy’sreporteditssalesplunged5.2%inNovemberandDecemberatstoresopenmorethanayear,adisappointingholidayseason
最新回复
(
0
)