设f(x),g(x)在[a,b]上连续,且在(a,b)内可微,又对于(a,b)内的x,有g′(x)≠0,则在(a,b)内存在一个ξ,使

admin2016-01-25  36

问题 设f(x),g(x)在[a,b]上连续,且在(a,b)内可微,又对于(a,b)内的x,有g′(x)≠0,则在(a,b)内存在一个ξ,使

选项

答案令 F(x)=[f(x)-f(a)][g(b)一g(x)]. 下面对F(x)验证其满足罗尔定理的全部条件,显然有 F(a)=0,F(b)=0. 又F(x)在[a,b]上连续,在(a,b)内可导,由罗尔定理知,存在ξ∈(a,b),使 F′(ξ)=0, 即 f′(ξ)[g(b)一g(ξ)]一[f(ξ)-f(a)]g′(ξ)=0. 由g′(ξ)≠0得到 [*]

解析 先找出辅助函数F(x).下面用凑导数法求之.将待证等式中的ξ改为x,式
f′(x)[g(b)一g(x)]一g′(x)[f(x)-f(a)]=0,    ②
即    [f(x)一f(a)]′[g(b)一g(x)]+[f(x)一f(a)].[g(b)一g(x)]′=0,
亦即    {[f(x)f(a)][g(b)一g(x)]}′=0
因而应作    F(x)=[f(x)一f(a)][g(b)一g(x)].
转载请注明原文地址:https://kaotiyun.com/show/lKU4777K
0

相关试题推荐
最新回复(0)