首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A的属于特征值λ1的一个特征向量,记B=A5-4A3+E,其中E为3阶单位矩阵. 验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A的属于特征值λ1的一个特征向量,记B=A5-4A3+E,其中E为3阶单位矩阵. 验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;
admin
2016-05-31
66
问题
设3阶实对称矩阵A的特征值λ
1
=1,λ
2
=2,λ
3
=-2,α
1
=(1,-1,1)
T
是A的属于特征值λ
1
的一个特征向量,记B=A
5
-4A
3
+E,其中E为3阶单位矩阵.
验证α
1
是矩阵B的特征向量,并求B的全部特征值与特征向量;
选项
答案
由Aα
1
=α
1
得A
2
α
1
=A
3
α
1
=α
1
,依次递推,则有A
3
α
1
=α
1
,A
5
α
1
=α
1
, 故 Bα
1
=(A
5
-4A
3
+E)α
1
=A
5
α
1
-4A
3
α
1
+α
1
=-2α
1
,即α
1
是矩阵B的属于特征值-2的特征向量。 由关系式B=A
5
-4A
3
+E及A的3个特征值λ
1
=1,λ
2
=2,λ
3
=-2得B的3个特征值为μ
1
=-2,μ
2
=1,μ
3
=1. 设α
2
,α
3
为B的属于μ
2
=μ
3
=1的两个线性无关的特征向量,又由A为对称矩阵,则B也是对称矩阵,因此α
1
与α
2
、α
3
正交,即[*] 因此α
2
,α
3
可取为下列齐次线性方程组两个线性无关的解,即 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/lQT4777K
0
考研数学三
相关试题推荐
中日甲午战争以后,民族意识普遍觉醒中先进中国人提出的主要口号是()。
一位社会学家发现大楼的一块玻璃坏了,起初他没太当回事,没过多久,他发现许多处窗户都破损了,经过调研后,他得出结论:一样东西如果有点破损,人们就会有意无意地加快它的破损速度,一样东西如果完好无损,或是及时维护,人们就会精心地护理。这就是著名的“破窗定律”。下
与国家、公民两个层面上下衔接,成为推进社会治理创新根本遵循的社会价值取向是()。
资产阶级思想与封建主义思想在中国的第一次正面交锋是()。
设矩阵Am×n的秩为r(A)=m<n,Em为m阶单位矩阵,下列结论中正确的是().
设向量组(Ⅰ):α1=(α11,α21,α31)T,α2=(α12,α22,α32)T,α3=(α12,α23,α33)T,向量组(Ⅱ):β1=(α11,α21,α31,α41)T,β2=(α12,α22,α32,α42)T,β3=(α12,α2
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:(1)t为何值时,向量组α1,α2,α3线性相关?(2)t为何值时,向量组α1,α2,α3线性无关?
设α1=(1,1,1),α2=(1,2,3),α3=(1,3,t),求:(1)t为何值时,向量组α1,α2,α3线性相关;(2)t为何值时,向量组α1,α2,α3线性无关;(3)当线性相关时,将α3表为α1和α2的线性组合.
设A为2阶矩阵,α1,α2为线性无关的2维列向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为_______.
随机试题
被誉为“岁寒三友”的是()。
设曲线y=x-ex在点(0,-1)处与直线z相切,则直线f的斜率为().
在信用评级机构对各类证券的评级中,以()为基础的国债信用评级总是最高的。正是在这种意义上,人们通常把国债称作“金边债券”。
工程项目风险管理过程中,风险识别工作包括()。
根据《建筑业企业资质管理规定》的规定,企业取得建筑业企业资质后不再符合相应资质条件的,建设主管部门、其他有关部门根据利害关系人的请求或者依据职权,可以责令其限期改正;逾期不改的,资质许可机关可以()其资质。
研究者根据预先拟定好的问题向被调查者提出,在面对面的一问一答中搜集资料,然后对群体的心理特点及心理状态进行分析和推测,这种心理学研究方法属于()。
虽然加涅和奥苏贝尔强调的学习顺序不同,但他们所说的教材知识的层次组织是相同的。()
管理系统的研制是因为()而开始的。
Theconcernthroughouttheworldin1988forthosethreewhalesthatwerelockedintheArcticicewasdramaticproofthatwhale
AreWeReadytoOpen?Emailhasthepotentialasacost-efficientandeffectivemarketingstream.Touseitanduseit
最新回复
(
0
)