首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n一中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,…,xn)= 记X一(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)的
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n一中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,…,xn)= 记X一(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)的
admin
2015-09-14
97
问题
设A为n阶实对称矩阵,秩(A)=n,A
ij
是A=(a
ij
)
n×n
一中元素a
ij
的代数余子式(i,j=1,2,…,n),二次型f(x
1
,x
2
,…,x
n
)=
记X一(x
1
,x
2
,…,x
n
)
T
,把f(x
1
,x
2
,…,x
n
)写成矩阵形式,并证明二次型f(x)的矩阵为A
-1
。
选项
答案
因为A为对称矩阵,所以A
ij
=A
ij
(i,j=1,2,…,n)。因此f(X)的矩阵形式为 [*] 从而 (A
-1
)
T
=(A
T
)
-1
=A
-1
故A
-1
也是实对称矩阵。因此,二次型f(X)的矩阵为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/lqU4777K
0
考研数学三
相关试题推荐
近百年来中国的发展变化早已证明,中国共产党的领导是历史的选择、是人民的选择。回首过去,中国共产党紧紧依靠人民,跨过一道又一道沟坎,取得一个又一个胜利,为中华民族作出了伟大历史贡献。中国共产党区别于其他任何政党的显著标志是
在社会生产中,生产力是生产的物质内容,生产关系是生产的社会形式,二者的有机结合和统一构成社会的生产方式。下列关于生产力和生产关系的说法,正确的是
实践是检验真理的唯一标准,但是这一标准具有不确定性,这是因为
近年来,我国立法机构和相关部门将酒驾、家暴、不文明旅游、高空坠物等有违社会公德但部分群众认识模糊的行为,在法律制度层面予以更为明确的规范,有效促进了移风易俗、增进了社会文明。这是法律为思想道德建设提供制度保障的有力证明。法律为思想道德提供制度保障体现在
劳动力是指人的劳动能力,是人的体力和脑力的总和。劳动力成为商品的基本条件有
检验真理的实践标准的绝对性是指()。
记者在采访2015年诺贝尔生理学或医学奖的中国女药学家屠呦呦时问她:“你在小鼠和猴子身上测试了青蒿素,证明它是有效的之后,你自己也服了药。你害怕吗?”屠呦呦答:“我们担心药物是否安全。我和两位同事服了药,表明药不会死人。我认为这是我作为药物化学家的责任和工
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论αm能否由α1,α2,…,αm-1线性表示?
已知二次型f(x1,x2,x3,x4)=2x1x2+2x1x3+2x1x4+2x3x4,则二次型f(x1,x2,x3,x4)的矩阵为_______,二次型f(x1,x2,x3,x4)的秩为________.
设A与B均为n,阶矩阵,且A与B合同,则().
随机试题
A、Onfoot.B、Bybus.C、Bycar.D、Bybike.A
层厚是指扫描后一幅图像对应的断面厚度。层厚与图像分辨率的关系是
药物组成中含有玄参、白芍、麦冬的方剂是药物组成中含有玄参、生地、麦冬的方剂是
在估计样本含量的公式N=k×Q/P中,错误的解释是
内毒素的主要成分是
下列药品中,最容易吸湿的是
下列关于商业助学贷款贷后检查的说法,错误的是()。(2010年下半年)
企业组织结构变革的方式包括()。
哥哥3年后的年龄与弟弟2年前的年龄和是29岁,弟弟现在的年龄是两人年龄差的3倍。哥哥今年:
对“暴力”、“胁迫”手段的理解。
最新回复
(
0
)