首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组I:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表示.下列命题正确的是
设向量组I:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表示.下列命题正确的是
admin
2017-04-24
46
问题
设向量组I:α
1
,α
2
,…,α
r
可由向量组Ⅱ:β
1
,β
2
,…,β
s
线性表示.下列命题正确的是
选项
A、若向量组Ⅰ线性无关,则r≤s.
B、若向量组Ⅰ线性无关,则r>s.
C、若向量组Ⅱ线性无关,则r≤s.
D、若向量组Ⅱ线性无关,则r>s.
答案
A
解析
(Ⅰ)4个3维向量β
1
,β
2
,β
3
,α
i
线性相关(i=1,2,3),若β
1
,β
2
,β
4
线性无关,则α
i
可由β
1
,β
2
,β
3
线性表示(i=1,2,3),这与题设矛盾,于是β
1
,β
2
,β
3
线性相关,从而0=|β
1
,β
2
,β
3
|=
于是a=5.此时,α
1
不能由向量组β
1
,β
2
,β
3
线性表示.
考虑下列矩阵的初等行变换
[β
1
,β
2
,β
3
|α
1
,α
2
,α
3
]=
可见当a≠5时,α
1
,α
2
,α
3
可由β
1
,β
2
,β
3
线性表示;当a=5时,α
1
,α
2
不能由β
1
,β
2
,β
3
线性表示,故a=5.
(Ⅱ)令矩阵A=[α
1
,α
2
,α
3
|β
1
,β
2
,β
3
],对A施行初等行变换
从而,β
1
=2α
1
+4α
2
一α
3
,β
2
=α
1
+2α
2
,β
3
=5α
1
+10α
2
一2α
3
.
注释 本题主要考查向量空间的基本知识及求线性表示式的基本运算.
注意,3个线性无关的3维向量必可作为3维向量空间的基,从而可线性表示任一3维向量,由此立即可知题给的向量组β
1
,β
2
,β
3
线性相关,于是由矩阵[β
1
,β
2
,β
3
]的秩小于3或行列式|β
1
,β
2
,β
3
|=0,便可求出a来.
转载请注明原文地址:https://kaotiyun.com/show/lyt4777K
0
考研数学二
相关试题推荐
证明:当zx>0时,ln(1+1/x)>1/(x+1).
设f(x)在[0,1]上二阶连续可导且f(0)=f(1),又|f"(x)|≤M,证明:|f’(x)|≤M/2.
设f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=0,证明:存在ξ∈(0,1),使得ξf’(ξ)+f(ξ)=0.
函数f(x)=x2-3x+4在[1,2]上满足罗尔定理的中值ξ=________.
求下列微分方程的通解。(ex+y-ex)dx+(ex+y+ey)dy=0
设非齐次线性微分方程y’+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程的通解为________。
函数f(x)在[0,+∞)上可导,f(0)=1,且满足等式求导数f’(x).
某工厂生产某产品,日总成本为C元,其中固定成本为200元,每多生产一单位产品,成本增加10元.该商品的需求函数为Q=50—2P,求Q为多少时,工厂日总利润L最大?
设在点x=1处可导,求a,b的值.
已知二次型f(x1,x2,x3)=4x2-3x3+4x1x2-4x1x3+8x2x3.写出二次型f的矩阵表达式;
随机试题
试述公民参与并影响公共政策的途径。
建立与依法行政模式相适应的行政文化环境与行政组织风气的要求是()
地面水中有机物污染较重时,会引起
治疗咳嗽凉燥证的最佳方剂是
已知水柜无水时该水塔的基本自振周期为1.0,按《高耸结构设计规范》(GBJl35—90)计算该水塔在水柜重心高度处的风振系数βz,其值最接近于______项数值。按钢筋混凝土塔筒的构造要求,该水塔支筒的最小壁厚tmin(mm)最接近于______项数值
石灰的主要原料是石灰岩,其主要成分是()。
下列不属于账务成果的计算和处理的是()。
当一位胆小的学生敢于主动向教师提问时,教师耐心解答并给与表扬和鼓励。教师的这种做法属于行为改变方法中的()。
乐府
读某地地质地形剖面图(图中1,2,3,4,5,6为地层编号,并表示地层由老到新),据此判断下题。若图中①处与②处的相对高度为5米。图中所示的沙丘为流动沙丘为了治理沙漠化应该在何处种草植树最合适()。
最新回复
(
0
)