首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设区域Ω是由圆锥面x2+y2=z2和平面z=1围成的立体,则积分I=(x2+y2)dv=________.
设区域Ω是由圆锥面x2+y2=z2和平面z=1围成的立体,则积分I=(x2+y2)dv=________.
admin
2022-07-21
36
问题
设区域Ω是由圆锥面x
2
+y
2
=z
2
和平面z=1围成的立体,则积分I=
(x
2
+y
2
)dv=________.
选项
答案
π/10
解析
方法一 圆锥面方程x
2
+y
2
=z
2
可化为z=ρ.将Ω投影xOy平面内,得圆域D:0≤θ≤2π,0≤ρ≤1,在D内任取一点,作平行于z轴的直线交Ω于上下两个曲面,ρ≤z≤1,故Ω表示为:Ω:0≤θ≤2π,0≤ρ≤1,ρ≤z≤1,于是
I=
(x
2
+y
2
)dv=∫
0
2π
dθ∫
0
1
ρ
3
dρ∫
ρ
1
dz=2π∫
0
1
ρ
3
(1-ρ)dρ=π/10
方法二 将Ω投影xOy平面内,得圆域,故0≤θ≤2π,在[0,2π]内任取一角,作过z轴的半平面交Ω,故φ的取值范围[0,π/4],再在[0,π/4]内任取一角,作从原点出发的射线,穿进r=0,穿出r=1/cosφ,可得0≤r≤1/cosφ,于是区域Ω可表示为Ω:0≤θ≤2π,0≤φ≤π/4,0≤r≤4/cosφ,故
I=
(x
2
+y
2
)dv=∫
0
2π
dθ∫
0
π/4
dφ∫
0
1/cosφ
r
2
sin
2
φr
2
sinφdr=
∫
0
π/4
tan
3
φ·sec
2
φdρ=π/10
方法三 做平行于xOy坐标面的平面截空间区域Ω所得的平面区域D
z
,于是
I=
(x
2
+y
2
)dv=∫
0
1
dz
(x
2
+y
2
)dxdy=∫
0
1
dz∫
0
2π
dθ∫
0
z
ρ
3
dρ=π/10
转载请注明原文地址:https://kaotiyun.com/show/mGf4777K
0
考研数学二
相关试题推荐
设f(x)在x=a处的左右导数都存在,则f(x)在x=a处().
设向量组α1,α2,α3为方程组AX=0的一个基础解系,下列向量组中也是方程组AX=0的基础解系的是().
设函数f(x)可导,且曲线y=f(x)在点(x0,f(x0))处的切线与直线y=2一x垂直,则当△x→0时,该函数在x=x0处的微分dy是()
设线性无关的函数y1,y2与y3均为二阶非齐次线性微分方程的解,C1和C2是任意常数,则该非齐次线性方程的通解是()
函数y=xx在区间[,+∞)上()
积分=___________.
D是圆周x2+y2=Rx所围成的闭区域,则=_________。
设f(x,y)在区域D:x2+y2≤t2上连续且f(0,0)=4,则=_______
求幂级数的和函数.
随机试题
某国2012年进口总额为800亿美元,出口总额为1000亿美元,该国GDP为2000亿美元。试计算:该国为贸易逆差还是贸易顺差,差额为多少。
进度纠偏的措施有多种,以下属于进度纠偏的技术措施的是( )。
根据《会计法》的规定,对随意变更会计处理方法的会计人员应处以()的罚款。
以下情况中,职位评价应该采取分类法的是()。
向投资者分配股票股利会引起公司股东权益总额发生变动。
在佛教常见的殿堂中,供奉地藏菩萨的是()。
改革开放是一场深刻而全面的社会变革,每一项改革都会对其他改革产生重要影响,每一项改革又都需要其他改革协同配合。要更加注重各项改革的相互促进,良性互动,整体推进,重点突破,形成推进改革开放的强大合力。这段话体现的哲学原理是()。
A、 B、 C、 D、 A
将考生文件夹下BAOBY文件夹设置“隐藏”属性。
Whatistheaimoftheday-longevent?
最新回复
(
0
)