首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设区域Ω是由圆锥面x2+y2=z2和平面z=1围成的立体,则积分I=(x2+y2)dv=________.
设区域Ω是由圆锥面x2+y2=z2和平面z=1围成的立体,则积分I=(x2+y2)dv=________.
admin
2022-07-21
86
问题
设区域Ω是由圆锥面x
2
+y
2
=z
2
和平面z=1围成的立体,则积分I=
(x
2
+y
2
)dv=________.
选项
答案
π/10
解析
方法一 圆锥面方程x
2
+y
2
=z
2
可化为z=ρ.将Ω投影xOy平面内,得圆域D:0≤θ≤2π,0≤ρ≤1,在D内任取一点,作平行于z轴的直线交Ω于上下两个曲面,ρ≤z≤1,故Ω表示为:Ω:0≤θ≤2π,0≤ρ≤1,ρ≤z≤1,于是
I=
(x
2
+y
2
)dv=∫
0
2π
dθ∫
0
1
ρ
3
dρ∫
ρ
1
dz=2π∫
0
1
ρ
3
(1-ρ)dρ=π/10
方法二 将Ω投影xOy平面内,得圆域,故0≤θ≤2π,在[0,2π]内任取一角,作过z轴的半平面交Ω,故φ的取值范围[0,π/4],再在[0,π/4]内任取一角,作从原点出发的射线,穿进r=0,穿出r=1/cosφ,可得0≤r≤1/cosφ,于是区域Ω可表示为Ω:0≤θ≤2π,0≤φ≤π/4,0≤r≤4/cosφ,故
I=
(x
2
+y
2
)dv=∫
0
2π
dθ∫
0
π/4
dφ∫
0
1/cosφ
r
2
sin
2
φr
2
sinφdr=
∫
0
π/4
tan
3
φ·sec
2
φdρ=π/10
方法三 做平行于xOy坐标面的平面截空间区域Ω所得的平面区域D
z
,于是
I=
(x
2
+y
2
)dv=∫
0
1
dz
(x
2
+y
2
)dxdy=∫
0
1
dz∫
0
2π
dθ∫
0
z
ρ
3
dρ=π/10
转载请注明原文地址:https://kaotiyun.com/show/mGf4777K
0
考研数学二
相关试题推荐
设函数z=f(x,y)的全微分为dz=xdx+ydy,则点(0,0)()
设A,B都是n阶非零矩阵,且AB=0,则A和B的秩
双曲线(x2+y2)2=x2一y2所围成区域的面积可用定积分表示为()
设(r,θ)为极坐标,r>0,0≤θ≤2π,设u=u(r,θ)具有二阶连续偏导数,并满足=0,求u(r,θ)_______.
设幂级数的收敛半径为3,则幂级数的收敛区间为_____
设k为常数,则=_______.
0显然积分难以积出.考虑积分中值定理,其中ξx介于a,a+a之间.所以
设函数f(x)在[e,+∞)上连续,且反常积分收敛,若f(x)=,则f(x)=_______.
写出下列级数的通项:
随机试题
用于治疗窦性心动过缓的方法不包括
适合作为《绚丽的民间彩塑》一课的教学重点的是()。
关于DSA成像的叙述,错误的是
A.水解B.光学异构化C.氧化D.聚合E.脱羧酚类药物的降解的主要途径是
建筑工程质量验收标准、规范编制的指导思想中,()是属于错的。
某项设备原值为90000元,预计净残值2700元,预计使用15000小时,实际使用12000小时,其中第五年实际使用3000小时,采用丁作量法第五年应计提折旧()元。
甘肃养马历史悠久,自()至今一直是我国养马业的重地。
认为“儿童在成长的过程国有关利他行为的规范的掌握是学习的结果”的理论属于()。
教师的根本任务是()。
WherecanIgetthereadingmaterial______?
最新回复
(
0
)