首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证: (1)存在η∈(1/2,1),使f(η)=η; (2)对任意实数λ,必存在ε∈(0,η),使得fˊ(ε)-λ[f(ε)-ε]=1
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证: (1)存在η∈(1/2,1),使f(η)=η; (2)对任意实数λ,必存在ε∈(0,η),使得fˊ(ε)-λ[f(ε)-ε]=1
admin
2012-01-29
117
问题
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证:
(1)存在η∈(1/2,1),使f(η)=η;
(2)对任意实数λ,必存在ε∈(0,η),使得fˊ(ε)-λ[f(ε)-ε]=1
选项
答案
证:(1)令φ(x)=f(x)-x,则φ(x)在[0,1]上连续,又φ(1)=-1<0,φ(1/2)=1/2>0,故由闭区间上连续函数的介值定理知,存在η∈(1/2,1),使得φ(η)=f(η)-η=0,即f(η)=η. (2)设F(x)=e
-λ
φ(x)=e
-λx
[f(x)-x],则F(x)在[0,η]上连续,在(x,η)内可导,且 F(0)=0,F(η)=e
-λη
φ(η)=0 即F(x)在[x,η]上满足罗尔定理的条件,故存在ε∈(x,η),使得 Fˊ(ε)=0,即e
-λε
{fˊ(ε)-λ[f(ε)-ε]-1}=0 从而fˊ(ε)-λ[fˊ(ε)-ε]=1
解析
转载请注明原文地址:https://kaotiyun.com/show/mqC4777K
0
考研数学二
相关试题推荐
[*]
设总体X的概率函数为又X1,X2,…,Xn是取自总体X的简单随机样本,求未知参数θ的矩估计量.
设F1(x),F2(x)分别为随机变量X1与X2的分布函数,概率密度分别为f1(x),f2(x)(两个函数均连续),则必为概率密度的是()
已知二次型f(x1,x2,x3)=x21+ax22+x33+2bx1x2+2x1x3+2x2x3,可通过正交变换化为f=y21+4y22。(Ⅰ)写出二次型矩阵A并求出a,b的值;(Ⅱ)写出将f正交化所使用的正交矩阵P;
设讨论当a,b取何值时,方程组AX=b无解、有唯一解、有无数个解,有无数个解时求通解.
微分方程2yy〞=(yˊ)2的通解为().
计算二重积分,其中积分区域D由直线y=|x|,y=2|x|及y=1围成.
累次积分=______.
随机试题
SIS家族编码产物的作用正确的是
甘麦大枣汤的病变部位是
患者,刘某,女,54岁,因血栓性浅静脉炎寻求康复治疗,不适宜的方法是
慢性肾小球肾炎的理想血压控制目标为
充填物过高,咬合时出现早接触可引起以亚砷酸失活剂置于邻面洞时,由于封闭不严,药物渗漏可引起
在美国债券市场中,机构投资者经常使用的三种综合类债券市场指数为()。I.莱恩指数Ⅱ.莱曼兄弟综合指数Ⅲ.所罗门兄弟投资级债券综合指数Ⅳ.美林国内市场指数
下列不属于市场风险的是()。
函数f(x)=中,x3的系数是().
左边图形由四个部分组成,各部分通过平面上的变化可以组成新图形,下列选项中,不是由这四个部分组成的是()。
下列叙述中正确的是()。
最新回复
(
0
)