首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,+∞)上可导,且当x>a时,f′(x)<k<0(k为常数).证明:如果f(a)>0,则方程f(x)=0在区间[a,a一]上有且仅有一个实根.
设f(x)在[a,+∞)上可导,且当x>a时,f′(x)<k<0(k为常数).证明:如果f(a)>0,则方程f(x)=0在区间[a,a一]上有且仅有一个实根.
admin
2016-11-03
33
问题
设f(x)在[a,+∞)上可导,且当x>a时,f′(x)<k<0(k为常数).证明:如果f(a)>0,则方程f(x)=0在区间[a,a一
]上有且仅有一个实根.
选项
答案
根据定积分的保序性,在不等式f′(x)<k的两端从a到x积分,得到 [*]kdt=k(x一a), 即 f(x)一f(a)<k(x一a), 亦即 f(x)<f(a)+k(x一a)(x>a). ① 令f(a)+k(x一a)=0,解得x=x
0
=a—f(a)/k,在式①中令x=x
0
得到f(x
0
)<0. 又f(a)>0,由零点定理知,f(x)=0在(a,x
0
)=(a,a—f(a)/k)内有实数根. 再由f′(x)<0(x>a),且f(x)在x≥a处连续知,f(x)在Ea,a—f(a)/k]上单调减少,故方程f(x)=0在该区间只有一个实根.
解析
用零点定理证之.需找另一点x
0
,使f(x
0
)<0.下面用定积分性质找出x
0
,也可用拉格朗日中值定理找出x
0
,使f(x
0
)<0.
转载请注明原文地址:https://kaotiyun.com/show/nXu4777K
0
考研数学一
相关试题推荐
设曲线方程为y=e-x(x≥0)(1)把曲线y=e-x,x轴,y轴和直线x=ε(ε>0)所谓平面图形绕x轴旋转一周得一旋转体,求此旋转体的体积V(ε),求满足的a;(2)在此曲线上找一点,使过该点的切线与两坐标轴所夹平面图形的面积最大,并求出该面积。
求下列函数的导数:
设y=ex,求dy和d2y:(1)x为自变量;(2)x=x(t),t为自变量,x(t)二阶可导.
微分方程xy’+y=0满足条件y(1)=1的解是y=________.
求幂级数x2n的收敛域及函数.
已知(1)计算行列式|A|.(2)当实数α为何值时,方程组Ax=β有无穷多解,并求其通解.
[*]由于Aα与α线性相关,则存在数k≠0使Aα=kα,即a=ka,2a+3=k,3a+4=k三式同时成立,解此关于a,k的方程组可得a=-1,k=1.
(2009年试题,21)设二次型f(x1,x2,x3)=a22+a22+(a一1)x32+2x1x3—2x2x3.求二次型f的矩阵的所有特征值;
设,其中D1={(x,y)|x2+y2≤r2},D2={(x,y)|x2+y2≤2r2},D3={(x,y)||x|≤r,|y|≤r}则下列结论正确的是().
设A为n阶实对称可逆矩阵,(1)记X=(x1,x2,…,xn)T,把二次型f(x1,x2,…,xn)写成矩阵形式;(2)二次型g(X)=XTAX是否与f(x1,x2,…,xn)合同?
随机试题
支持心房颤动的体征是
PCO2增高引起呼吸加强的主要机制是刺激
新生儿出生体重2800g,身长50cm,面色红润,哭声响亮,一般情况好,现母乳喂养。该新生儿开乳时间是()。
不属于特定穴的是
下列酸碱指示剂中在酸性区域变色的有
根据《工伤保险条例》相关规定,下列因员工工伤所生产的费用中,不应由工伤保险基金支付的是()。
下列关于疏散宽度的说法正确的有()。
行为治疗的主要方法包括()。
Howmanyplanetsarethereinthesolarsystemrevolvingaroundthesun?
AmericahashadmanyPresidentswhohavebeenfamousallovertheworld.PeoplefromothercountriesknowthenamesWashington,
最新回复
(
0
)