首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设φ1(x),φ2(x),φ3(x)为二阶非齐次线性方程y’’+a1(x)y’+a2(x)y=f(x)的三个线性无关解,则该方程的通解为( ).
设φ1(x),φ2(x),φ3(x)为二阶非齐次线性方程y’’+a1(x)y’+a2(x)y=f(x)的三个线性无关解,则该方程的通解为( ).
admin
2020-03-24
51
问题
设φ
1
(x),φ
2
(x),φ
3
(x)为二阶非齐次线性方程y’’+a
1
(x)y’+a
2
(x)y=f(x)的三个线性无关解,则该方程的通解为( ).
选项
A、C
1
[φ
1
(x)+φ
2
(x)]+C
2
φ
3
(x)
B、C
1
[φ
1
(x)-φ
2
(x)]+C
2
φ
3
(x)
C、C
1
[φ
1
(x)+φ
2
(x)]+C
2
[φ
1
(x)-φ
3
(x)]
D、C
1
φ
1
(x)+C
2
φ
2
(x)+C
3
φ
3
(x),其中C
1
+C
2
+C
3
=1
答案
D
解析
因为φ
1
(x),φ
2
(x),φ
3
(x)为方程y’’+a
1
(x)y’+a
2
(x)y=f(x)的三个线性无关解,
所以φ
1
(x)-φ
3
(x),φ
2
(x)-φ
3
(x)为方程y’’+a
1
(x)y’+a
2
(x)y=0的两个线性无关解,
于是方程y’’+a
1
(x)y’+a
2
(x)y=f(x)的通解为
C
1
[φ
1
(x)-φ
3
(x)]+C
2
[φ
2
(x)-φ
3
(x)]+φ
3
(x)
即C
1
φ
1
(x)+C
2
φ
2
(x)+C
3
φ
3
(x),其中C
3
=1-C
1
-C
2
或C
1
+C
2
+C
3
=1,选(D).
转载请注明原文地址:https://kaotiyun.com/show/nzx4777K
0
考研数学三
相关试题推荐
非齐次线性方程组Ax=b中未知量的个数为n,方程个数为m,系数矩阵的秩为r,则()
设f(x)具有二阶连续导数,且f'(1)=,则()
设随机变量X,Y相互独立,它们的分布函数为FX(x),FY(y),则Z=min(X,Y)的分布函数为().
下列函数f(x)中其原函数及定积分∫-11f(x)dx都存在的是
以下3个命题:①若数列{un}收敛于A,则其任意子数列{uni}必定收敛于A;②若单调数列{xn}的某一子数列{xni}收敛于A,则该数列必定收敛于A;③若数列{x2n}与{x2n+1}都收敛于A,则数列{xn}必定收敛于A正确的个数为(
设可微函数f(x,y)在点(x0,y0)处取得极小值,则下列结论正确的是().
交换二次积分的积分次序:∫-10dy∫21-xf(x,y)dx=_____.
设I=∫01dx∫exe2xf(x,y)dy,交换积分次序后I=________.
极限=__________.
设(1,一1)是曲线y=x3+ax2+bx+c的拐点,且y在x=0处取极大值.求a,b,c.
随机试题
党的十九大进一步明确了决胜全面建成小康社会的战略安排,要赢得全面建成小康社会的最后胜利,必须()
下列水泵中不属于叶片泵的是()。
[*]
肾病综合征低白蛋白血症的主要原因为
关于胃的形态描述,错误的是
普萘洛尔的特点有
伤口污染轻,清创术可延长时限至
拱一般可做成()。
根据《证券法》的规定,某上市公司的下列事项中,不属于证券交易内幕信息的是()。
甲与乙约定:“甲的儿子如果去外地工作,甲、乙之间的房屋租赁合同即行生效。”这一民事法律行为所附条件为()
最新回复
(
0
)