首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设总体X~N(μ,σ2),μ,σ2未知,而X1,X2,…,Xn是来自总体X的样本. (Ⅰ)求使得f(x;μ,σ2)dx=0.05的点a的最大似然估计,其中f(x;μ,σ2)是X的概率密度; (Ⅱ)求P{X≥2}的最大似然估计.
设总体X~N(μ,σ2),μ,σ2未知,而X1,X2,…,Xn是来自总体X的样本. (Ⅰ)求使得f(x;μ,σ2)dx=0.05的点a的最大似然估计,其中f(x;μ,σ2)是X的概率密度; (Ⅱ)求P{X≥2}的最大似然估计.
admin
2018-11-22
38
问题
设总体X~N(μ,σ
2
),μ,σ
2
未知,而X
1
,X
2
,…,X
n
是来自总体X的样本.
(Ⅰ)求使得
f(x;μ,σ
2
)dx=0.05的点a的最大似然估计,其中f(x;μ,σ
2
)是X的概率密度;
(Ⅱ)求P{X≥2}的最大似然估计.
选项
答案
已知μ,σ的最大似然估计值分别为 [*] (Ⅰ)[*]f(x;μ,σ
2
)dx=F(+∞;μ,σ
2
)一F(a;μ,σ
2
)=1一Ф[*], 其中,F为X的分布函数. 要使 [*] 必须有[*]=1.645,即a=μ+1.645σ. 由最大似然估计的不变性,得a的最大似然估计为[*] (Ⅱ)P{X≥2}=1一Ф[*],由最大似然估计的不变性,知P{X≥2}的最大似然估计为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/oIM4777K
0
考研数学一
相关试题推荐
有甲、乙、丙三个盒子,第一个盒子里有4个红球1个白球,第二个盒子里有3个红球2个白球,第三个盒子里有2个红球3个白球,先任取一个盒子,再从中先后取出3个球,以X表示红球数.(Ⅰ)求X的分布律;(Ⅱ)求所取到的红球不少于2个的概率.
设f(x)在[a,b]上连续,在(a,b)内可导(0≤a<b≤).证明:存在ξ,η∈(a,b),使得
设随机变量X在(1,4)上服从均匀分布,当X=x(1<x<4)时,随机变量Y的条件密度函数为fY|X(y|x)=(Ⅰ)求Y的密度函数;(Ⅱ)求X,Y的相关系数;(Ⅲ)令Z=X—Y,求Z的密度函数.
设un(x)满足u’n(x)=un(x)+xn—1ex(n=1,2,…),且un(1)=un(x)的和函数.
设总体X~N(0,σx),且X1,X2,…,X15为来自总体X的简单随机样本,则统计量=___________.
设X1,X2,X3,X4,X5,是来自总体N(1,4)的简单随机样本,~F(1,3),则a=().
设L为由y2=x+3及x=2围成的区域的边界,取逆时针方向,则等于().
已知α1,α2均为2维向量,矩阵A=[2α1+α2,α1一α2],β=[α1,α2],若行列式|A|=6,则|B|=________.
设n阶(n≥3)矩阵A的主对角元均为1,其余元素均为a,且方程组AX=0只有一个非零解组成基础解系,则a=_________.
设f(μ)连续可导,且∫04f(μ)du=2,L为半圆周y=,起点为原点,终点为B(2,0),则I=∫Lf(x2+y2)(xdx+ydy)=_________.
随机试题
某女,56岁。心前区疼痛5年,每逢秋冬季加重,近半月时感心前区刺痛,且放射至左肩背部,伴心悸胸闷,舌质紫暗,脉细涩。辨证为
抛物线y2=4x与直线x=3所围成的平面图形绕x轴旋转一周形成的旋转体体积是()。
相对于直接融资来说,间接融资的信誉度较高,风险性相对较小,融资的稳定性较强。()
在美国、加拿大和英围,早餐麦片极受欢迎,是最盈利的行业之一。但是,在法国、德国、意大利以及其他很多国家,早餐麦片就不怎么受欢迎,利润也不高。这体现的是()。
美术是人类感受美、表现美和创造美的重要形式,也是表达自己对周围世界的认识和情绪态度的独特方式。()
下列说法不是杜威实用主义教育学论点的是()。
坚持中国特色新型工业化道路,就要做到()。
47,53,64,36,38,62,29,()
天气预报能为我们的生活提供良好的帮助,它属于计算机的()应用。
Anyphysicaltheoryisalwaysprovisional,inthesensethatitisonlyahypothesis;youcanneverproveit.Nomatterhowmany
最新回复
(
0
)