首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x,y)在(2,一2)处可微,满足 f(sin(xy)+2cosx,xy一2cosy)=1+x2+2y+o(x2+y2), 这里o(x2+y2)表示比x2+y2为高阶无穷小((x,y)→(0,0)时),试求曲面z=f(x,y)在点
设函数f(x,y)在(2,一2)处可微,满足 f(sin(xy)+2cosx,xy一2cosy)=1+x2+2y+o(x2+y2), 这里o(x2+y2)表示比x2+y2为高阶无穷小((x,y)→(0,0)时),试求曲面z=f(x,y)在点
admin
2017-02-28
61
问题
设函数f(x,y)在(2,一2)处可微,满足
f(sin(xy)+2cosx,xy一2cosy)=1+x
2
+
2
y+o(x
2
+y
2
),
这里o(x
2
+y
2
)表示比x
2
+y
2
为高阶无穷小((x,y)→(0,0)时),试求曲面z=f(x,y)在点(2,一2,f(2,一2))处的切平面.
选项
答案
因为f(x,y)在(2,一2)处可微,所以f(x,y)在(2,一2)处连续 取(x,y)=(0,0)得f(2,一2)=1. 因为f(x,y)在(2,一2)处可微,所以f(x,y)在(2,一2)处可偏导, 令y=0得f(2cosx,一2)=1+x
2
+o(x
2
), [*] 故曲面∑:z=f(x,y)在点(2,一2,1)处的法向量为n={1,一1,1},切平面方程为 π:(x一2)一(y+2)+(z一1)=0,即π:x—y+z一5=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/Utu4777K
0
考研数学一
相关试题推荐
设X服从[a,b]上的均匀分布,证明αX+β(α>0)服从[aα+β,bα+β]上的均匀分布.
(1)设f(x)在R上有定义,证明:y=f(x)的图形关于直线x=1对称的充要条件是f(x)满足f(x+1)=f(1-x),x∈R(2)设f(x)在R上有定义,且y=f(x)的图形关于直线x=1与直线x=2对称,证明:f(x)是周期函数,并求f(x
由Y=sinx的图形作下列函数的图形:(1)y=sin2x(2)y=2sin2x(3)y=1—2sin2x
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(I)AX=0和(Ⅱ)ATAx=0必有().
A是n阶矩阵,且A3=0,则().
设3阶矩阵A的特征值为1,2,2,E为3阶单位矩阵,则丨4A-1-E丨=_________.
设随机变量X服从参数为(2,p)的二项分布,随机变量y服从参数为(3,p)的二项分布,若P丨x≥1丨=5/9,则P丨Y≥1丨=_________.
A、发散B、条件收敛C、绝对收敛D、敛散性不确定C
(2011年试题,三)设函数z=f(xy,yg(x)),其中函数,具有二阶连续偏导数,函数g(x)可导且在x=1处取得极值
随机试题
吸入性损伤水肿期最易出现的严重后果
利多卡因一次最大用量为()
工程承包单位在进行风险管理时,为了降低风险与回避风险可以采用多种风险管理方法和措施。然而,无论采用何种风险管理方法,都应当符合的要求有()。
国务院期货监督管理机构依法履行职责。可以采取的措施有( )。
在我国旅游统计中,区分是否为游客的重要标准是看其访问的主要目的是不是通过所从事的活动获取报酬。()
在西方,马铃薯早就已经是主粮了,这和西方的马铃薯种植历史、饮食习惯有关。在我国,西北和内蒙古地区也有直接以马铃薯为主食的习惯;而对我国大部分地区,还是水稻、小麦的消费需求占主导。有些人可能会质疑,土豆当主食,大家能习惯吗?这就涉及主粮和主食这两个在不同范围
()的课堂行为指与促进课堂教学目的实现相联系的行为。
下列选项中最适合填入图形空缺处,使整幅图形呈现一致的规律性的是()。
(2014下项管)三个备选投资方案的决策损益表如下,如果采用最大最小决策标准(悲观准则),则选择______。
Thereisabigdifferencebetweentownlifeand【D1】__________inEngland.Inthecountry,everybodyknowseverybodyelse.Theyknow
最新回复
(
0
)