首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,AT是A的转置矩阵,对于线性方程组(Ⅰ)Ax=0和(Ⅱ)AtAx=0,必有( )
设A为n阶矩阵,AT是A的转置矩阵,对于线性方程组(Ⅰ)Ax=0和(Ⅱ)AtAx=0,必有( )
admin
2018-02-07
41
问题
设A为n阶矩阵,A
T
是A的转置矩阵,对于线性方程组(Ⅰ)Ax=0和(Ⅱ)A
t
Ax=0,必有( )
选项
A、(Ⅰ)的解是(Ⅱ)的解,(Ⅱ)的解也是(Ⅰ)的解。
B、(Ⅰ)的解是(Ⅱ)的解,(Ⅱ)的解不是(Ⅰ)的解。
C、(Ⅱ)的解是(Ⅰ)的解,(Ⅰ)的解不是(Ⅱ)的解。
D、(Ⅱ)的解不是(Ⅰ)的解,(Ⅰ)的解也不是(Ⅱ)的解。
答案
A
解析
如果α是(1)的解,有Aα=0,可得
A
T
Aα=A
T
(Aα)=A
T
0=0,
即α是(2)的解。故(1)的解必是(2)的解。
反之,若α是(2)的解,有A
T
Aα=0,用α
T
左乘可得
0=α
T
0=α
T
(A
T
Aα)=(α
T
A
T
)(Aα)=(Aα)
T
(Aα),
若设Aα=(b
1
,b
2
,…,b
n
),那么
(Aα)
T
(Aα)=b
1
2
+b
2
2
+…+b
n
2
=0
b
i
=0(i=1,2,…,n),
即Aα=0,说明α是(1)的解。因此(2)的解也必是(1)的解。所以应选A。
转载请注明原文地址:https://kaotiyun.com/show/oXk4777K
0
考研数学二
相关试题推荐
设(X,Y)为连续型随机向量,已知X的密度函数fX(x)及对一切x,在X=x的条件下Y的条件密度fY|X(y|x).求:(1)密度函数f(x,y);(2)Y的密度函数fY(y);(3)条件密度函数fX|Y(x|y).
求下列各微分方程的通解或在给定初始条件下的特解
证明下列各题:
设f(x)在[0,1]上连续,取正值且单调减少,证明
证明下列函数在(-∞,+∞)内是连续函数:(1)y=3x2+1(2)y=cosx
设u=e-xsinx/y,则э2u/эxэy在点(2,1/π)处的值________。
设A为3阶实对称矩阵,且满足条件A2+2A=0,已知A的秩r(A)=2.求A的全部特征值;
设矩阵,已知线性方程组Ax=β有解但不唯一.试求:(1)a的值;(2)正交矩阵Q,使QTAQ为对角矩阵.
已知,二次型f(x1,x2,x3)=xT(ATA)x的秩为2.求实数n的值;
随机试题
A.脐部圆形包块,加腹压后包块突出,平卧时包块消失B.卵黄管的脐端未闭,遗留较短的盲管C.脐带周围发生缺损,腹腔内脏脱出体外D.出生后见胃肠突出于腹壁外,脐和脐带正常,腹壁裂孔在脐的右侧并为纵向E.卵黄管的脐端有残留的黏膜形成息肉样红色突起,少量液
A、祛暑利湿,补气生津B、祛暑除湿,和胃消食C、祛暑解表,清热生津D、解表化湿,理气和中E、清热解毒,利湿化浊六合定中丸的功效()。
第二类精神药品处方印刷用纸为
抢救青霉素过敏性休克的首选药物是
EVA、PE类聚合物改性沥青混合料的废弃温度为()。
某公司为获得一项工程合同,拟向工程发包方的有关人员支付好处费8万元,公司市场部持公司的批示到财务部领取该笔款项。财务部经理谢某认为该项支出不符合有关规定,但考虑到公司主要领导已作了批示,遂同意拨付了款项。对谢某做法的下列认定中正确的是()。
我国对资本主义工商业进行社会主义改造的政策是和平赎买。()
小刚在一次演讲比赛中有五名裁判给他打分,除去最低分外,他的平均成绩是96分;加上最低分,它的平均成绩下降了3分。问其中打的最低分是多少?()
设f(x)连续,其中V={(x,y,z)|x2+y2≤t2,0≤z≤h}(t>0),求其中,[x]表示不超过x的最大整数.
WhatcanbecitedtoshowMr.Eliasson’sunderstandingoftotal-immersionart?
最新回复
(
0
)