首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,AT是A的转置矩阵,对于线性方程组(Ⅰ)Ax=0和(Ⅱ)AtAx=0,必有( )
设A为n阶矩阵,AT是A的转置矩阵,对于线性方程组(Ⅰ)Ax=0和(Ⅱ)AtAx=0,必有( )
admin
2018-02-07
23
问题
设A为n阶矩阵,A
T
是A的转置矩阵,对于线性方程组(Ⅰ)Ax=0和(Ⅱ)A
t
Ax=0,必有( )
选项
A、(Ⅰ)的解是(Ⅱ)的解,(Ⅱ)的解也是(Ⅰ)的解。
B、(Ⅰ)的解是(Ⅱ)的解,(Ⅱ)的解不是(Ⅰ)的解。
C、(Ⅱ)的解是(Ⅰ)的解,(Ⅰ)的解不是(Ⅱ)的解。
D、(Ⅱ)的解不是(Ⅰ)的解,(Ⅰ)的解也不是(Ⅱ)的解。
答案
A
解析
如果α是(1)的解,有Aα=0,可得
A
T
Aα=A
T
(Aα)=A
T
0=0,
即α是(2)的解。故(1)的解必是(2)的解。
反之,若α是(2)的解,有A
T
Aα=0,用α
T
左乘可得
0=α
T
0=α
T
(A
T
Aα)=(α
T
A
T
)(Aα)=(Aα)
T
(Aα),
若设Aα=(b
1
,b
2
,…,b
n
),那么
(Aα)
T
(Aα)=b
1
2
+b
2
2
+…+b
n
2
=0
b
i
=0(i=1,2,…,n),
即Aα=0,说明α是(1)的解。因此(2)的解也必是(1)的解。所以应选A。
转载请注明原文地址:https://kaotiyun.com/show/oXk4777K
0
考研数学二
相关试题推荐
[*]由克莱姆法则知,该方程组有惟一解:x1=D1/D=1,x2=x3=…=xn=0.
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证:(1)存在η∈(1/2,1),使f(η)=η;(2)对任意实数λ,必存在ε∈(0,η),使得fˊ(ε)-λ[f(ε)-ε]=1
A、0B、1C、-π/2D、π/2A判断间断点类型的基础是求函数在间断点处的左、右极限.
求f(x)的值域。
求函数的最大值和最小值。
设D是位于曲线下方、x轴上方的无界区域.当a为何值时,y(a)最小?并求此最小值.
设三阶实对称矩阵A的特征值是1,2,3;矩阵A的属于特征值1,2的特征向量分别是α1=(-1,-1,1)T,α2=(1,-2,-1)T.求A的属于特征值3的特征向量.
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求正交矩阵Q和对角矩阵A,使得QTAQ=A.
已知,二次型f(x1,x2,x3)=xT(ATA)x的秩为2.求实数n的值;
f(x1,x2,x3)=ax12+ax22+(a-1)x32+2x1x3—2x2x3.求二次型f的矩阵的所有特征值;
随机试题
A.桂枝甘草龙骨牡蛎汤合参附汤B.桂枝甘草龙骨牡蛎汤合桃仁红花煎C.苓桂术甘汤D.真武汤心悸不安,胸闷不舒,心痛时作,少寐多梦,唇甲青紫者,治宜选用
假小叶的特征性病变不包括
根据《民法总则》的规定,下列人员中,属于完全民事行为能力人的有()。
某物业服务企业招聘了一批物业服务技术人员,这些技术人员在上岗前,物业服务企业对他们进行了岗前培训,主要培训内容包括建筑识图、建筑构造和建筑材料方面的基础知识以及二次装修管理、接管验收等物业管理基础性工作。如何识读结构施工图,从结构施工图中可以了解到哪些
反馈在操作技能学习过程中的作用是非常关键的,其中()的作用尤为明显。
人民法院通过行使行政审判权,对公安机关及其人民警察的具体行政行为的合法性进行审查,促使公安机关及其人民警察依法行政的监督形式是( )。
2009年全国研究生教育招生51.1万人,毕业37.1万人,年末在校生人数为140.5万。普通高等教育本专科招生639.5万人,毕业531.1万人,年末在校生人数为2144.7万。各类中等职业教育招生873.6万人,毕业619.2万人,年末在校生人数217
如下图所示,某校园网用10Gbps的POS技术与Internet相连,POS接口的帧格式是SONET。路由协议的选择方案是校园网内部采用OSPF动态路由协议,校园网与Internet的连接使用静态路由协议。另外,还要求在R3上配置一个loopback接口,
Thewordscienceisheardsoofteninmoderntimesthatalmosteverybodyhassomenotionofitsmeaning.Ontheotherhand,its
[A]junction[I]manipulate[B]employ[J]plausible[C]literally[K]contrarily[D]ranks[L]statistical[E]rationalize[M
最新回复
(
0
)