首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组(Ⅰ):b1,…,br能由向量组(Ⅱ):a1,…,as线性表示为 (b1,…,br)=(a1,…,as)K,其中K为s×r矩阵,且向量组(Ⅱ)线性无关。证明向量组(Ⅰ)线性无关的充分必要条件是矩阵K的秩r(K)=r。
设向量组(Ⅰ):b1,…,br能由向量组(Ⅱ):a1,…,as线性表示为 (b1,…,br)=(a1,…,as)K,其中K为s×r矩阵,且向量组(Ⅱ)线性无关。证明向量组(Ⅰ)线性无关的充分必要条件是矩阵K的秩r(K)=r。
admin
2017-01-21
39
问题
设向量组(Ⅰ):b
1
,…,b
r
能由向量组(Ⅱ):a
1
,…,a
s
线性表示为 (b
1
,…,b
r
)=(a
1
,…,a
s
)K,其中K为s×r矩阵,且向量组(Ⅱ)线性无关。证明向量组(Ⅰ)线性无关的充分必要条件是矩阵K的秩r(K)=r。
选项
答案
必要性:令B=(b
1
,…,b
r
),A=(a
1
,…,a
s
),则有B=AK,由定理r(B)=r(AK)≤min{ r(A),r(K)},结合向量组(Ⅰ):b
1
,b
2
,…,b
r
线性无关知r(B=r,故r(K)≥r。 又因为K为r×s阶矩阵,则有r(K)≤min{r,s}。 且由向量组(Ⅰ):b
1
,b
2
,…,b
r
能由向量组(Ⅱ):a
1
,a
2
,…,a
s
线性表示,则有r≤s,即min{r,s}=r。 综上所述 r≤r(K)≤r,即r(K)=r。 充分性:已知r(K)=r,向量组(Ⅱ)线性无关,r(A)=s,因此A的行最简矩阵为[*],存在可逆矩阵P使 [*] 于是有PB=PAK=[*] 由矩阵秩的性质 r(B)=r(PB)=[*]=r(K), 即r(B)=r(K)=r,因此向量组(Ⅰ)线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/omH4777K
0
考研数学三
相关试题推荐
设A为n阶实对称矩阵,秩﹙A﹚=n,Aij是A=(aij)n×m中元素aij(i,j=1,2,…,n)的代数余子式,二次型f(x1,x2,…,xn)=(I)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(X)的
设f(x)为[0,1]上的单调增加的连续函数,证明
设f(x,y)为区域D内的函数,则下列各种说法中不正确的是().
设f(x)是连续函数,F(x)是f(x)的原函数,则().
设y=sinx,0≤x≤π/2,t为_______时,右图中阴影部分的面积.S1与S2之和S最小.
设函数则f(x)在x=0处().
已知下列齐方程组(I)(Ⅱ)求解方程组(I),用其导出组的基础解系表示通解;
考虑二元函数的下面4条性质(I)f(x,y)在点(xo,yo)处连续(Ⅱ)f(x,y)在点(xo,yo)处的两个偏导数连续(Ⅲ)f(x,y)在点(xo,yo)处可微(Ⅳ)f(x,y)在点(xo,yo)处的两个偏导数存在
设(x0,y0)是抛物线y=ax2+bx+c上的一点,若在该点的切线过原点,则系数应满足的关系是_______.
某保险公司统计资料表明,在索赔户中被盗索赔户占20%,用x表示抽取的100个索赔户中被盗索赔户的户数.(1)求X的概率分布;(2)用拉普拉斯定理求被盗户数不少于14户且不多于30户的概率的近似值.
随机试题
A.Whydidn’tyougotothepartylastnight?B.Thatwasn’tallthatterrible.C.What’sthetemperature?D.Iwillgowithyou
产生IL-2的细胞主要为
A、早期妊娠B、中期妊娠C、晚期妊娠D、异位妊娠E、葡萄胎停经2个月,阴道少许出血,伴腹痛,子宫无明显增大,可能的诊断是
下列哪些属于杭帮菜的传统名菜?()
学前儿童美育的重点在于培养儿童()
对符合条件的机动车,()交通管理部门应当自受理之日起5个工作日内完成机动车登记审查工作。
法律关系:是指法律在调整人们在行为过程中所形成的一种特殊的社会关系,即法律上的权利义务关系。它由法律关系主体、法律关系内容和法律关系客体三要素构成。根据上述定义,下面对法律关系的叙述,不正确的一项是()。
一种常见的现象是,仅从国外引进的一些畅销科普读物在国内并不畅销,有人对此解释说,这与我们多年来沿袭的文理分科有关。文理分科人为地造成了自然科学与人文社会科学的割裂,导致科普类图书的读者市场还没有真正形成。以下哪项如果为真,最能加强上述观点?
【2014河北NO.33】下列句子中,没有错别字的一句是:
下列作家中,()不是法国作家。
最新回复
(
0
)