首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组(Ⅰ):b1,…,br能由向量组(Ⅱ):a1,…,as线性表示为 (b1,…,br)=(a1,…,as)K,其中K为s×r矩阵,且向量组(Ⅱ)线性无关。证明向量组(Ⅰ)线性无关的充分必要条件是矩阵K的秩r(K)=r。
设向量组(Ⅰ):b1,…,br能由向量组(Ⅱ):a1,…,as线性表示为 (b1,…,br)=(a1,…,as)K,其中K为s×r矩阵,且向量组(Ⅱ)线性无关。证明向量组(Ⅰ)线性无关的充分必要条件是矩阵K的秩r(K)=r。
admin
2017-01-21
34
问题
设向量组(Ⅰ):b
1
,…,b
r
能由向量组(Ⅱ):a
1
,…,a
s
线性表示为 (b
1
,…,b
r
)=(a
1
,…,a
s
)K,其中K为s×r矩阵,且向量组(Ⅱ)线性无关。证明向量组(Ⅰ)线性无关的充分必要条件是矩阵K的秩r(K)=r。
选项
答案
必要性:令B=(b
1
,…,b
r
),A=(a
1
,…,a
s
),则有B=AK,由定理r(B)=r(AK)≤min{ r(A),r(K)},结合向量组(Ⅰ):b
1
,b
2
,…,b
r
线性无关知r(B=r,故r(K)≥r。 又因为K为r×s阶矩阵,则有r(K)≤min{r,s}。 且由向量组(Ⅰ):b
1
,b
2
,…,b
r
能由向量组(Ⅱ):a
1
,a
2
,…,a
s
线性表示,则有r≤s,即min{r,s}=r。 综上所述 r≤r(K)≤r,即r(K)=r。 充分性:已知r(K)=r,向量组(Ⅱ)线性无关,r(A)=s,因此A的行最简矩阵为[*],存在可逆矩阵P使 [*] 于是有PB=PAK=[*] 由矩阵秩的性质 r(B)=r(PB)=[*]=r(K), 即r(B)=r(K)=r,因此向量组(Ⅰ)线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/omH4777K
0
考研数学三
相关试题推荐
设函数f(x)∈C[a,b],且f(x)>0,D为区域a≤x≤b,a≤y≤b,证明:(b-a)2.
设总体X的概率密度为而X1,X2…,Xn是来自总体X的简单随机样本,则未知参数θ的矩估计量为_________.
[*]
设X1,X2为来自正态总体N(μ,σ2)的样本,则X1+X2与X1-X2必().
设齐次线性方程组其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、无穷多组解?在有无穷多解时,求出全部解,并用基础解系表示全部解.
设f(x)和φ(x)在(-∞,+∞)内有定义,f(x)为连续函数,且f(x)≠0,φ(x)有间断点,则().
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:秩r(A)≤2;
二元函数f(x,y)在点(0,0)处可微的一个充分条件是
已知g(x)是微分方程g’(x)+sinx.g(x)=cosx满足初始条件g(0)=0的解,则=_____.
微分方程y"+y=cosx的一个特解的形式为y"=().
随机试题
主死的恶候,哪一项是错误的()(1993年第15题)
设A1,A2,A3构成一完备事件组,且P(A1)=0.5,P(A2)=0.7,则P(A3)=________
信源也被称为()
ThereoncelivedapoortailorwhohadasoncalledAladdin,acareless,idleboy【21】woulddonothingbutplayalldaylongint
关于心室肌有效不应期的长短影响最大的是
通常称为社会效益的是()。
在工程项目施工阶段,监理机构的主要工作任务是()。
男女在形态、机能和运动能力等方面逐渐出现明显差异的阶段是()。
下列说法中,正确的是()。
设函数Q(x,y)在xOy平面上具有连续偏导数,曲线积分与路径无关,并且对任意t恒有求Q(x,y).
最新回复
(
0
)