首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
如果数列{xn}收敛,{yn}发散,那么{xnyn}是否一定发散?如果{xn}和{yn}都发散,那么{xnyn}的敛散性又将如何?
如果数列{xn}收敛,{yn}发散,那么{xnyn}是否一定发散?如果{xn}和{yn}都发散,那么{xnyn}的敛散性又将如何?
admin
2015-07-22
99
问题
如果数列{x
n
}收敛,{y
n
}发散,那么{x
n
y
n
}是否一定发散?如果{x
n
}和{y
n
}都发散,那么{x
n
y
n
}的敛散性又将如何?
选项
答案
在题设两种情况下,{x
n
y
n
}的敛散性都不能确定,现在先就{x
n
}收敛,{y
n
}发散的情况来分析.利用 [*] 这个恒等式,就可得到下述结论:若{x
n
}收敛且不收敛于零,{y
n
}发散,则{x
n
y
n
}必发散.这是因为若{x
n
y
n
}收敛,且又{x
n
}收敛而极限不等于零,则从上述恒等式及极限相除法则,可知{y
n
}收敛,这与假设矛盾.若 [*], 且{y
n
}发散,则{x
n
y
n
}可能收敛,也可能发散,如: ①x
n
=[*],y
n
=n,则x
n
y
n
=1,于是{x
n
y
n
}收敛. ②x
n
=[*],y
n
=(一1)
n
n,则x
n
y
n
=(一1)
n
,于是{x
n
y
n
}发散. 现在再就{x
n
}和{y
n
}都发散的情况来分析{x
n
y
n
}的敛散性.有下面的结论:若{x
n
}和{y
n
}都发散,且两者至少有一个是无穷大,则{x
n
y
n
}必发散.这是因为如果{x
n
y
n
}收敛,而{x
n
}为无穷大,从等式y
n
=[*]便得到{y
n
}收敛于零,这与假设矛盾.若{x
n
}和{y
n
}都不是无穷大且都发散,则{x
n
y
n
}可能收敛,也可能发散,如 ③x
n
=y
n
=(一1)
n
有x
n
y
n
=1,于是{x
n
y
n
}收敛. ④x
n
=(一1)
n
,y
n
=1一(一1)
n
,有x
n
y
n
=(一1)
n
一1,于是{x
n
y
n
}发散.
解析
转载请注明原文地址:https://kaotiyun.com/show/oyU4777K
0
考研数学三
相关试题推荐
2022年4月11日,习近平总书记来到海南省五指山市,考察了海南热带雨林国家公园五指山片区,了解海南保护自然环境和生物多样性情况,并强调“海南以()立省”。
他经历了上百次战斗,三次立功,十次负伤,是经历过长津湖战役,动过47次手术的特等伤残军人;退伍后,拖着残躯带领乡亲建设家园。并将自己的经历体会写成小说《极限人生》,被誉为“中国的保尔·柯察金”。他就是获得2021年“感动中国”年度人物的(
国务院联防联控机制2022年5月9日召开电视电话会议,中共中央政治局委员、国务院副总理孙春兰出席会议并讲话。她强调,要切实把思想和行动统一到习近平总书记重要讲话精神上来,落实党中央、国务院决策部署,坚持“动态清零”不犹豫不动摇,坚持底线思维、极限思维,(
设f(x,y)在区域D上连续,(xo,yo)是D的一个内点,Dr是以(xo,yo)为中心以r为半径的闭圆盘,试求极限
若幂级数在x=-1处收敛,则此级数在x=2处().
计算下列极限:
设{an},{bn},{cn}均为非负数列,且则必有
没数列{xn}满足o<x<1<π,xn+1=sinxn(n=l,2,…).证叫sinxn存在,并求该极限;
随机试题
试述现代汉语语法的主要特点。
「学生の________が落ちた」と言われるのは今に始まったことではないのだが、大学で通学マナーや交通安全指導をしないといけないなんて世も末だ。
王某在某市大宝商场挑中一台彩电,发现该彩电与同规格彩电相比性能更好,付清货款时,商场承诺“送货上门”,后因商场送货人员所拖板车与一卡车相撞,导致彩电毁损。王某在与商场协商无果的情况下,向某市人民法院起诉。问:你如果是承办此案的法官,你将如何处理此
尿道合并直肠损伤时,下列哪项正确
血瘀气滞多见于
下列药物不正确吩噻嗪类抗精神病药的是
刑事诉讼中,遇到下列特殊情形,不同的司法机关处理方式正确的是?
1912年,孙中山表示要以全力“尽扫专制之流毒,确定共和,以达革命之宗旨”。此话应出自()。
TheEuropeanUnionreachedapreliminarydealtocurbbanker’scompensationthatwoulddrasticallylimittheaccountthatcanbe
Thenatureofworkischanging.Recenttechnologicaladvances,ashiftfrommanufacturingtoservice-basedorganizations,incr
最新回复
(
0
)