设y’=arctan(x-1)2,y(0)=0,求∫01y(x)dx.

admin2022-10-25  37

问题 设y’=arctan(x-1)2,y(0)=0,求∫01y(x)dx.

选项

答案01y(x)dx=xy(x)|01-∫01xarctan(x-1)2dx=y(1)-01(x-1)arctan(x-1)2d(x-1)-∫01arctan(x-1)2dx=-1/2∫01arctan(x-1)2d(x-1)2=1/2∫01arctantdt=1/2(tarctant|01-∫01t/(1+t2)dt)=π/8-1/4ln2.

解析
转载请注明原文地址:https://kaotiyun.com/show/pIC4777K
0

最新回复(0)