首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
自考
求向量组α1=(1,2,1,0)T,α2=(1,1,1,2)T,α3=(3,4,3,4)T,α4=(4,5,6,4)T的秩与一个极大线性无关组.
求向量组α1=(1,2,1,0)T,α2=(1,1,1,2)T,α3=(3,4,3,4)T,α4=(4,5,6,4)T的秩与一个极大线性无关组.
admin
2014-10-27
51
问题
求向量组α
1
=(1,2,1,0)
T
,α
2
=(1,1,1,2)
T
,α
3
=(3,4,3,4)
T
,α
4
=(4,5,6,4)
T
的秩与一个极大线性无关组.
选项
答案
以α
1
,α
2
,α
3
,α
4
为列向量构成矩阵A[*] 由此可知B的列向量组的秩为3,且第1,2,4列为B的列向量组的一个极大线性无关组,所以向量组α
1
,α
2
,α
3
,α
4
的秩为3,α
1
,α
2
,α
4
为其一个极大线性无关组(α
1
,α
2
,α
4
也是一个极大线性无关组).
解析
转载请注明原文地址:https://kaotiyun.com/show/pSyR777K
本试题收录于:
线性代数(经管类)题库公共课分类
0
线性代数(经管类)
公共课
相关试题推荐
谦虚的;适中的a.m_____
假设你是李梅,想申请加入英语俱乐部。请给俱乐部负责人Kelvin写一封150词左右的英文信,内容应涉及自己的基本情况,并咨询相关事宜,如入会方式、条件、会费、活动等。
下列诗联中构成对偶的有()
阅读下面一段文字,回答问题:井蛙不可以语于海者,拘于虚也;夏虫不可以语于冰者,笃于时也;曲士不可以语于道者,束于教也。——选自《秋水》A.概括这段文字的主旨和三个
已知A为3阶矩阵,ξ1,ξ2为齐次线性方程组Ax=0的基础解系,则|A|=_______.
求矩阵的特征值,并判定A能否与对角矩阵相似.(需说明理由)
设A为n阶方阵,|A|≠0,若A有特征值λ,则A*的特征值_______.
在Q(x,y,z)=λ(x2+y2+z2)+2xy+2xz一2yz中,问:λ取什么值时,Q为负定的?
设A为n阶方阵,且A2=A,证明:若A的秩为r<n,则A—E的秩为n一r,其中E是n阶单位矩阵.
已知四阶行列式D的第二行元素为1,0,﹣2,3,第四行元素对应的代数余子式依次为6,﹣2,k,1,则k﹦______.
随机试题
正数用原码和补码表示时,其最高位是符号位,则该符号位的值分别是()
正常胰腺不发生自身消化,是因胰腺有完善的防御机制,包括
小儿化脓性脑膜炎的脑脊液变化为
A.氯化琥珀胆碱B.丁溴东莨菪碱C.毛果芸香碱D.石杉碱甲E.多萘培齐
下列关于土工合成材料处治层的说法,错误的是()。
目前,我国安全生产监督管理体制是综合监管与行业监管相结合、()、政府监督与其他监督相结合。
针对人员密集场所存在下列情况,根据《重大火灾隐患判定方法》的规定,可判定为重大火灾隐患要素的有()。
咨询的效果可以从()维度进行评定。
下面列出的条目中,哪一些是数据库技术的研究领域?Ⅰ.DBMS软件的研制Ⅱ.数据库及其应用系统的设计Ⅲ.数据库理论
Youaregoingtoreadamagazinearticleinwhichfivepeopletalkaboutrailwayjourneys.Forquestions22-35,choosefromthe
最新回复
(
0
)