首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的各行元素之和都为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T都是齐次线性方程组AX=0的解. (1)求A的特征值和特征向量. (2)求作正交矩阵Q和对角矩阵Λ,使得 QTAQ=Λ. (3)求A及[A-(3/2)E]6.
设3阶实对称矩阵A的各行元素之和都为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T都是齐次线性方程组AX=0的解. (1)求A的特征值和特征向量. (2)求作正交矩阵Q和对角矩阵Λ,使得 QTAQ=Λ. (3)求A及[A-(3/2)E]6.
admin
2017-06-08
103
问题
设3阶实对称矩阵A的各行元素之和都为3,向量α
1
=(-1,2,-1)
T
,α
2
=(0,-1,1)
T
都是齐次线性方程组AX=0的解.
(1)求A的特征值和特征向量.
(2)求作正交矩阵Q和对角矩阵Λ,使得
Q
T
AQ=Λ.
(3)求A及[A-(3/2)E]
6
.
选项
答案
(1)条件说明A(1,1,1)
T
=(3,3,3)
T
,即α
0
=(1,1,1)
T
是A的特征向量,特征值为3.又α
1
,α
2
都是AX=0的解说明它们也都是A的特征向量,特征值为0.由于α
1
,α
2
线性无关,特征值0的重数大于1.于是A的特征值为3,0,0. 属于3的特征向量:cα
0
,c≠0. 属于0的特征向量:c
1
α
1
+c
2
α
2
c
1
,c
2
不都为0. (2)将α
0
单位化,得η
0
=[*] 对α
1
,α
2
作施密特正交化,得 [*] 作Q=(η
0
,η
1
,η
2
),则Q是正交矩阵,并且 [*] (3)建立矩阵方程A(α
0
,α
1
,α
2
):(3α
0
,0,0),用初等变换法求解: [*] 于是 [*] [A-(3/2)E]
6
=(3/2)
6
E.
解析
转载请注明原文地址:https://kaotiyun.com/show/qct4777K
0
考研数学二
相关试题推荐
[*]
设(X,Y)为连续型随机向量,已知X的密度函数fX(x)及对一切x,在X=x的条件下Y的条件密度fY|X(y|x).求:(1)密度函数f(x,y);(2)Y的密度函数fY(y);(3)条件密度函数fX|Y(x|y).
设,证明fˊ(x)在点x=0处连续.
设一机器在任意时刻以常数比率贬值.若机器全新时价值10000元,5年末价值6000元,求其在出厂20年末的价值.
求下列不定积分:
微生物培养的增殖速率和它们现有的量及现有的营养物质的乘积成正比(比例系数为k),营养物质减少的速率和微生物的现有量成正比(比例系数为k1),实验开始时,容器内有x。g微生物和y。g营养物质,试求微生物的量及营养物质的量随时间的变化规律,并问何时微生物停止增
下列函数可以看成是由哪些简单函数复合而成?(其中a为常数,e≈2.71828)
求积分的值:
求微分方程ydx+(x-3y2)dx=0满足条件y|x=1=1的解y。
(1998年试题,二)设A是任一n(n≥3)阶方阵,A*是其伴随矩阵,又k为常数,且k≠0,±1,则必有(kA)*=().
随机试题
适用保护管辖原则的限制条件。
联系实际论述信息机关的重要性。
某工程项目的施工招标文件中表明该工程采用综合单价计价方式,工期为15个月。承包单位投标所报工期为13个月。合同总价确定为8000万元。合同约定:实际完成工程量超过估计工程量25%以上时允许调整单价:拖延工期每天赔偿金为合同总价的1‰,最高拖延工期赔偿限额
矿业工程施工阶段质量控制的重点是:施工工艺和()。
下列关于建筑业企业资质等级相关条件的表述中,符合二级施工总承包资质法定条件的有()。
打开输入法软键盘的方法是将鼠标指针指向中文输入法状态提示框的软键盘按钮上,双击鼠标左键。()
科学技术研究中,“马太效应”导致的结果是()。
看图:两个圆,大小相同,相互分离。请问你会想到什么?
数据库中对概念模式内容进行说明的语言是
ThechangesingloballyaveragedtemperaturethathaveoccurredattheEarth’ssurfaceoverthepastcenturyaresimilarinsize
最新回复
(
0
)