首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=y(χ)二阶可导,且y′≠0,χ=χ(y)是y=y(χ)的反函数. (1)将χ=χ(y)所满足的微分方程=0变换为y=y(χ)所满足的微分方程; (2)求变换后的微分方程满足初始条件y(0)=0,y′(0)=的解.
设y=y(χ)二阶可导,且y′≠0,χ=χ(y)是y=y(χ)的反函数. (1)将χ=χ(y)所满足的微分方程=0变换为y=y(χ)所满足的微分方程; (2)求变换后的微分方程满足初始条件y(0)=0,y′(0)=的解.
admin
2017-09-15
86
问题
设y=y(χ)二阶可导,且y′≠0,χ=χ(y)是y=y(χ)的反函数.
(1)将χ=χ(y)所满足的微分方程
=0变换为y=y(χ)所满足的微分方程;
(2)求变换后的微分方程满足初始条件y(0)=0,y′(0)=
的解.
选项
答案
[*] 代入原方程得y〞-y=sinχ,特征方程为r
2
-1=0,特征根为r
1,2
=±1,因为i不是特征值,所以设特解为y
*
=acosχ+bsinχ,代入方程得a=0,b=-[*],故y
*
=-[*]sinχ,于是方程的通解为y=C
1
e
χ
+C
2
e
-χ
-[*]sinχ,由初始条件得C
1
=1,C
2
=-1,满足初始条件的特解为y=e
χ
-e
-χ
-[*]sinχ.
解析
转载请注明原文地址:https://kaotiyun.com/show/qdt4777K
0
考研数学二
相关试题推荐
[*]
对离散型情形证明:(1)E(X+Y)=EX+EY.(2)EXY=EXEY
考察下列函数的极限是否存在.
设,证明fˊ(x)在点x=0处连续.
f(x)连续,且f(0)≠0,求极限
设函数z=f(xy,yg(x)),其中函数f具有二阶连续偏导数,函数g(x)可导且在z=1处取得极值g(1)=1.求
求微分方程(y+x2e-x)dx-xdy=0的通解y.
设曲线方程为γ=e-x(x≥0).(I)把曲线y=e-x(x≥0)、x轴、y轴和直线x=ξ(ξ>0)所围成平面图形绕x轴旋转一周得一旋转体,求此旋转体的体积V(ξ),求满足(Ⅱ)在此曲线上找一点,使过该点的切线与两个坐标轴所夹平面图形的面积最大,并求出
讨论,在点(0,0)处的连续性、可偏导性及可微性.
,则P12009P2-1=_______.
随机试题
痰热互结,症见胸脘痞闷,按之则痛,舌苔黄腻,脉滑数者,治宜选用
Excusemeforbreakfastin,______Ihavesomenewsforyou.
龋病是牙体硬组织发生的:()
下列数字疼痛评分法叙述正确的是
A、易患水痘的人群B、易患白色念珠菌感染的人群C、易患白斑的人群D、易患扁平苔藓的人群E、易患地图舌的人群病毒感染的儿童
患者男,28岁。拖拉机挤压伤,胸痛、胸闷2小时。体检:血压80/60mmHg,脉率103次/分。鼻翼翕动,胸骨区吸气时凹陷,呼气时凸出。X线检查:胸骨上端骨折;左右第3、4、5、6、7肋骨骨折。全腹有压痛,反跳痛、腹肌紧张,有移动性浊音。腹腔穿刺吸出不凝血
重置价格的出现是技术进步的必然结果,同时也是“()”的体现。
金字塔平视时为等边三角形,其底面是正方形,若底边长为100米,则每个侧面的面积为多少?
墓于以下题干,回答问题一个店主准备糖果礼物盒,每个盒子包含从F、G、H中选出的两种硬糖和从P、Q、R、S、T中选出的3种软糖,附带下列限制条件:Q和T不能选入同一盒;P和S不能选入同一盒;G和T不能选入同一盒。
Answerthequestionbelow,usingNOMORETHANTHREEWORDSfromthepassageforeachanswer.Writeyouranswersinboxes11-13on
最新回复
(
0
)