首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)、g(x)在[一a,a](a>0)上连续,g(x)为偶函数,且满足f(x)+f(一x)=A(A为常数). (1)试证:∫—aaf(x)g(x)dx=A∫0ag(x)dx; (2)计算:|sinx|arctanexdx.
设f(x)、g(x)在[一a,a](a>0)上连续,g(x)为偶函数,且满足f(x)+f(一x)=A(A为常数). (1)试证:∫—aaf(x)g(x)dx=A∫0ag(x)dx; (2)计算:|sinx|arctanexdx.
admin
2017-07-26
52
问题
设f(x)、g(x)在[一a,a](a>0)上连续,g(x)为偶函数,且满足f(x)+f(一x)=A(A为常数).
(1)试证:∫
—a
a
f(x)g(x)dx=A∫
0
a
g(x)dx;
(2)计算:
|sinx|arctane
x
dx.
选项
答案
(1)∫
—a
a
f(x)g(x)dx=∫
—a
0
f(x)g(x)dx+∫
0
a
f(x)g(x)dx, 又f(x)g(x)dx[*]∫
0
a
f(一t)g(一t)dt,所以, ∫
—a
a
f(x)g(x)dx=∫
0
a
f(一t)g(一t)dt+∫
0
a
f(x)g(x)dx =∫
0
a
f(—x)g(x)dx+∫
0
a
f(x)g(x)dx =∫
0
a
[f(—x)+f(x)]g(x)dx =A∫
0
a
g(x)dx, 故 ∫
—a
a
f(x)g(x)dx=A∫
0
a
g(x)dx. (2)在积分[*]|sinx|arctane
x
dx中,f(x)=arctane
x
,g(x)=|sinx|.因为g(一x)= g(x),由 [f(x)+f(一x)]’=(arctane
x
+arctane
—x
)’=[*]=0, 可知 f(x)+f(一x)=arctane
x
+arctane
—x
=c(常数), 即 arctane
x
+arctane
x
=arctane
0
+arctane
0
=[*], 所以,f(x),g(x)满足已证结论的条件,故 [*]
解析
先拆分,经变量替换转化为同一区间上的积分后再合并.
转载请注明原文地址:https://kaotiyun.com/show/qgH4777K
0
考研数学三
相关试题推荐
n阶方阵(一∞,0)U(0,+∞),当a≠b且a≠一(n一1)b时,秩A=_____
一辆飞机场的交通车载有25名乘客,途经9个站,每位乘客都等可能在9个站中任意一站下车,交通车只在有乘客下车时才停车,求下列各事件的概率:(1)交通车在第i站停车;(2)交通车在第i站和第j站至少有一站停车;(3)交通车在第i站
假设随机变量X和Y同分布,X的概率密度为f(x)=(Ⅰ)已知事件A={X>a}和B={Y>a}独立,且P(A∪B)=3/4,求常数a;(Ⅱ)求1/X2的数学期望.
下列矩阵中能与对角矩阵相似的是().
y=2x的麦克劳林公式中xn项的系数是_________.
求微分方程y"+y’一2y=xex+sin2x的通解.
设f(x)=,则当x→0时,f(x)是g(x)的().
袋中有12只球,其中红球4个,白球8个,从中一次抽取两个球,求—F3i事件发生的概率:(1)两个球中一个是红球一个是白球;(2)两个球颜色相同.
设f(x)在[a,b]上有定义,M>0且对任意的x,y∈[a,b],有|f(x)一f(y)|≤M|x—y|k.(1)证明:当k>0时,f(x)在[a,b]上连续;(2)证明:当k>1时,f(x)≡常数.
设f(x)在[a,b]上有定义,M>0且对任意的x,y∈[a,b],有|f(x)一f(y)|≤M|x一y|k.证明:当k>0时,f(x)在[a,b]上连续;
随机试题
电阻并联电路中,能够成立关系的是()。
以下哪一种CΥ征象最有助于脑外肿瘤的诊断:
石料抗压试验要求破坏荷载应控制在压力机全程的20%~80%。()
在工程项目策划和决策阶段,项目建议书、可行性研究报告是()的工作成果。
下列选项不属于现代营销管理指导思想的是()。
研究学校情境中学与教的基本心理规律的心理学分支学科是()
在一行政诉讼案中,作为被告的某行政机关委托某律师担任诉讼代理人。该律师在诉讼期间调查收集了充分的证据材料。下列关于该律师做法的选项正确的是()。
学生认识具有与人类认识过程不同的显著特点是()。
Theideawasquitebrilliant.
Oneinsix.Believeitornot,that’sthenumberofAmericanswhostrugglewithhunger.Tomaketomorrowalittlebetter,Feedin
最新回复
(
0
)