首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)、g(x)在[一a,a](a>0)上连续,g(x)为偶函数,且满足f(x)+f(一x)=A(A为常数). (1)试证:∫—aaf(x)g(x)dx=A∫0ag(x)dx; (2)计算:|sinx|arctanexdx.
设f(x)、g(x)在[一a,a](a>0)上连续,g(x)为偶函数,且满足f(x)+f(一x)=A(A为常数). (1)试证:∫—aaf(x)g(x)dx=A∫0ag(x)dx; (2)计算:|sinx|arctanexdx.
admin
2017-07-26
31
问题
设f(x)、g(x)在[一a,a](a>0)上连续,g(x)为偶函数,且满足f(x)+f(一x)=A(A为常数).
(1)试证:∫
—a
a
f(x)g(x)dx=A∫
0
a
g(x)dx;
(2)计算:
|sinx|arctane
x
dx.
选项
答案
(1)∫
—a
a
f(x)g(x)dx=∫
—a
0
f(x)g(x)dx+∫
0
a
f(x)g(x)dx, 又f(x)g(x)dx[*]∫
0
a
f(一t)g(一t)dt,所以, ∫
—a
a
f(x)g(x)dx=∫
0
a
f(一t)g(一t)dt+∫
0
a
f(x)g(x)dx =∫
0
a
f(—x)g(x)dx+∫
0
a
f(x)g(x)dx =∫
0
a
[f(—x)+f(x)]g(x)dx =A∫
0
a
g(x)dx, 故 ∫
—a
a
f(x)g(x)dx=A∫
0
a
g(x)dx. (2)在积分[*]|sinx|arctane
x
dx中,f(x)=arctane
x
,g(x)=|sinx|.因为g(一x)= g(x),由 [f(x)+f(一x)]’=(arctane
x
+arctane
—x
)’=[*]=0, 可知 f(x)+f(一x)=arctane
x
+arctane
—x
=c(常数), 即 arctane
x
+arctane
x
=arctane
0
+arctane
0
=[*], 所以,f(x),g(x)满足已证结论的条件,故 [*]
解析
先拆分,经变量替换转化为同一区间上的积分后再合并.
转载请注明原文地址:https://kaotiyun.com/show/qgH4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 A
设A为3阶矩阵,P为3阶可逆矩阵,且若P=(α1,α2,α3),Q=(α1+α2,α2,α3),则Q-1AQ=().
试确定常数A,B,C的值,使得ex(1+Bx+Cx2)=1+Ax+o(x3),其中o(x3)是当x→0时比x3高阶的无穷小.
设幂级数的收敛半径分别为,则幂级数的收敛半径为().
设函数f(u)可微,且f(0)=1/2,则z=f(4x2-y2)在点(1,2)处的全微分dz丨(1,2)=_________.
设总体X的分布函数为(X1,X2,…,X10)为来自总体X的简单随机样本,其观察值为1.1,3,1,0,0,3,1,0,1.求总体X的分布律;
某流水线上产品不合格的概率为各产品合格与否相互独立,当检测到不合格产品时即停机检查,设从开始生产到停机检查生产的产品数为X,求E(X)及D(X).
已知矩阵有三个线性无关的特征向量,求a的值,并求An
设总体X的概率分布为,其中参数θ未知且.从总体X中抽取一个容量为8的简单随机样本,其8个样本值分别是1,0,1,一1,1,1,2,1.试求:(I)θ的矩估计值;(Ⅱ)θ的最大似然估计值;(Ⅲ)经验分布函数F8(x).
证明:连续函数取绝对值后函数仍保持连续性,举例说明可导函数取绝对值不一定保持可导性.
随机试题
用硫氰酸盐作显色剂测定Co2+时,Fe3+有干扰,可用()作为掩蔽剂。
外阴癌的临床症状有()
道德的客观方面包括()。[2004年考试真题]
公司发行境内上市外资股,应当委托经中国证监会认可的境内证券经营机构作为主承销商或者主承销商之一。公司不可以聘请国外证券公司担任国际协调人。()
素质教育的主渠道和教育改革的原点是()
行政机关应当根据被许可人的延续有效期申请,在()作出是否准予延续的决定。
“善待自己,让自己的心态平和;善待家人,有任何问题好好思考、好好解决;善待周边亲友和陌生人,不让自己成为垃圾人,不给身边人传递负能量。”当调查问卷问及应当如何提升国民素养、优化社会生态环境时,网友“巫眯”如是回答。“自己努力做一个文明有教养的人,
剩余价值率是
级数=________.
Today,inmanyhighschools,teachingisnowatechnicalmiracleofcomputerlabs,digitalcameras,DVDplayersandlaptops.Tea
最新回复
(
0
)