首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型厂(x1,x2,x3)=xTAx的矩阵A=(aij)满足a11+a22+a33=-6,AB=C, 用正交变换将二次型化为标准形,并写出所用的正交变换和所得标准形;
已知二次型厂(x1,x2,x3)=xTAx的矩阵A=(aij)满足a11+a22+a33=-6,AB=C, 用正交变换将二次型化为标准形,并写出所用的正交变换和所得标准形;
admin
2016-04-29
48
问题
已知二次型厂(x
1
,x
2
,x
3
)=x
T
Ax的矩阵A=(a
ij
)满足a
11
+a
22
+a
33
=-6,AB=C,
用正交变换将二次型化为标准形,并写出所用的正交变换和所得标准形;
选项
答案
记α
1
=(1,0,-1)
T
,记α
2
=(1,2,1)
T
,则B=(α
1
,α
2
),C=(0,-12α
2
). 由题设AB=C知A(α
1
,α
2
)=(0,-12α
2
),即Aα
1
=0,Aα
2
=-12α
2
,所以λ
1
=0,λ
2
=-12是矩阵A的特征值,α
1
,α
2
是A分别属于特征值λ
1
=0,λ
2
=-12的特征向量. 设λ
3
是第三个特征值,利用题设λ
1
+λ
2
+λ
3
=a
11
+ a
22
+ a
33
=-6,所以λ
3
=6. 设λ
3
=6对应的特征向量为α
3
= (x
1
,x
2
,x
3
)
T
,由于λ
3
≠λ
2
,λ
3
≠λ
1
,所以α
3
与α
1
,α
2
均正交,即[*] 解得(x
1
,x
2
,x
3
)
T
=t(1,-1,1)
T
,取α
3
=(1,-1,1)
T
,将α
1
,α
2
,α
3
单位化得3个两两正交的单位向量组 [*] 记U=(η
1
,η
2
,η
3
),则U为正交矩阵,且U
T
AU=[*] 作正交变换x=Uy,即得二次型的标准形为:-12y
2
2
+6y
3
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/r2T4777K
0
考研数学三
相关试题推荐
近代中国人民始终面临的两大历史任务是()。
近年来,我国基础设施建设投入巨大,但一些项目、工程完工之日便是维修动工之时。这其中,往往就有为了迎接某个节日、节点甚至创造一个纪录,不顾实际赶工期的原因。在“时间压倒一切”的情况下,质量难以保证,有时甚至为了验收、检查而去作假。这一做法割裂了(
与辛亥革命相比,五四运动的特点在于()。
有网友说:疫情之下,每个人都是志愿者。2020年1月20日以来,各地开展疫情防控志愿服务项目17.7万个,参与疫情防控的注册志愿者达361万人,记录志愿服务时间1.16亿小时。志愿服务已经()。
二次型f(x1,x2,x3)=x12+x22+x32-4x2x3的正惯性指数为().
在利用古典概型计算概率时,选择正确的样本空间是关键.比如,考虑一个投掷两枚均匀硬币的试验,其样本空间可以有两种表示.(1)如果在试验中没有区分这两枚硬币,也许是因为这两枚硬币完全相同,并且将两枚硬币同时投掷;或者是因为我们观察投掷结果时并不关心哪
设f(x)在[a,b]上连续,且f(x)>0,x∈[a,b],证明:(1)Fˊ(x)≥2;(2)方程F(x)=0在区间(a,b)内有且仅有一个根.
下列函数均是x→0时的无穷小,按从低阶到高阶的次序将这函数排列起来:(2)x+x2。;(3)1-cosx2;(4)ln(1+x3/2;(5)sin(tan2x).
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证:对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)-λ[f(ξ)-ξ]=1.
掷一枚不均匀的硬币,设正面出现的概率为P,反面出现的概率q为q=1一P,随机变量X为一直掷到正面和反面都出现为止所需要的次数,则X的概率分布刀__________.
随机试题
房劳过度,易损伤的脏腑是()
病理性Q波见于哪些疾病
患者,女,30岁,病毒性感冒,护士对其进行健康指导,下列不正确的是
五行中具有“曲直”特性的是木。()
关于安全生产地方性法规的法律效力,下列说法中,正确的是()。
证券组合管理的意义在于采用适当的方法选择多种证券作为投资对象,以达到在保证预定收益的前提下使投资风险最小或在控制风险的前提下使投资收益最大化的目标。()
银行本票的提示付款期限最长不得超过()。
直观行动思维活动的典型方式是()。
()是教育立法程序的最后一个环节,也是必须经过的一个环节。
Oneofthebestwaysforpeopletokeepfitisto________healthyeatinghabits.
最新回复
(
0
)