首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型厂(x1,x2,x3)=xTAx的矩阵A=(aij)满足a11+a22+a33=-6,AB=C, 用正交变换将二次型化为标准形,并写出所用的正交变换和所得标准形;
已知二次型厂(x1,x2,x3)=xTAx的矩阵A=(aij)满足a11+a22+a33=-6,AB=C, 用正交变换将二次型化为标准形,并写出所用的正交变换和所得标准形;
admin
2016-04-29
39
问题
已知二次型厂(x
1
,x
2
,x
3
)=x
T
Ax的矩阵A=(a
ij
)满足a
11
+a
22
+a
33
=-6,AB=C,
用正交变换将二次型化为标准形,并写出所用的正交变换和所得标准形;
选项
答案
记α
1
=(1,0,-1)
T
,记α
2
=(1,2,1)
T
,则B=(α
1
,α
2
),C=(0,-12α
2
). 由题设AB=C知A(α
1
,α
2
)=(0,-12α
2
),即Aα
1
=0,Aα
2
=-12α
2
,所以λ
1
=0,λ
2
=-12是矩阵A的特征值,α
1
,α
2
是A分别属于特征值λ
1
=0,λ
2
=-12的特征向量. 设λ
3
是第三个特征值,利用题设λ
1
+λ
2
+λ
3
=a
11
+ a
22
+ a
33
=-6,所以λ
3
=6. 设λ
3
=6对应的特征向量为α
3
= (x
1
,x
2
,x
3
)
T
,由于λ
3
≠λ
2
,λ
3
≠λ
1
,所以α
3
与α
1
,α
2
均正交,即[*] 解得(x
1
,x
2
,x
3
)
T
=t(1,-1,1)
T
,取α
3
=(1,-1,1)
T
,将α
1
,α
2
,α
3
单位化得3个两两正交的单位向量组 [*] 记U=(η
1
,η
2
,η
3
),则U为正交矩阵,且U
T
AU=[*] 作正交变换x=Uy,即得二次型的标准形为:-12y
2
2
+6y
3
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/r2T4777K
0
考研数学三
相关试题推荐
马克思主义认为,主客体之间的价值关系是指()。
商品交换必须实现等价交换,这是商品经济必须遵循的一条重要原则。下列选项中对等价交换的正确认识有()。
二次型f(x1,x2,x3)=2x1x2+2x1x3+2x2x3的规范形为().
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:(1)t为何值时,向量组α1,α2,α3线性相关?(2)t为何值时,向量组α1,α2,α3线性无关?
连续投掷一枚均匀硬币10次,求其中有3次是正面的概率.
写出下列各试验的样本空间:(1)掷两枚骰子,分别观察其出现的点数;(2)观察一支股票某日的价格(收盘价);(3)一人射靶三次,观察其中靶次数;(4)一袋中装有10个同型号的零件,其中3个合格7个不合格,每次从中随意取
设函数z=f(x,-y)在点P(x,y)处可微,从x轴正向到向量l的转角为θ,从x轴的正向到向量m的转角为θ+π/2,求证:
A是n阶矩阵,且A3=0,则().
设z=z(x,y)是由方程x2+y2-z=φ(x+Y+z)所确定的函数,其中φ具有二阶导数,且φ’≠-1.(I)求dz;
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则fˊ(1)=().
随机试题
女,56岁。昏迷5小时,轻度黄疸,口有腥臭味,双侧肢体肌张力对称性增高,瞳孔等大。尿蛋白及尿糖均阴性,A/G=25/35。最有可能的诊断是()
发生切口疝最主要的病因是
《机电产品国际招标投标实施办法》规定推荐评审专家入库,被推荐的专家原则上年龄不宜超过()岁。
(2006年)图8—39所示电路中,变压器视为理想的,R2=R1,则输出电压与输入电压的有效值之比为()。
食品生产经营者违反《中华人民共和国食品安全法》规定,造成他人人身、财产或者其他损害的,依法承担赔偿责任,其财产不足以同时承担民事赔偿责任和缴纳罚款、罚金时,应()。
干燥防失火,急躁必跺足。强调什么记忆方式?()
下面不能作为结构化方法软件需求分析工具的是
From:KeithRogersTo:EmilyRhodesSubject:ShippingConferenceDate:August11DearMs.Rhodes,Iamema
ThatwassoseriousamatterthatIhadnochoicebut______thepolice.
SevenWaystoCreateaHappyHouseholdA)Everyfamilyisdifferent,withdifferentpersonalities,customs,andwaysofthin
最新回复
(
0
)