首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量组,满足 Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3. 求作矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量组,满足 Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3. 求作矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B.
admin
2016-10-21
51
问题
设A为3阶矩阵,α
1
,α
2
,α
3
是线性无关的3维列向量组,满足
Aα
1
=α
1
+α
2
+α
3
,Aα
2
=2α
2
+α
3
,Aα
3
=2α
2
+3α
3
.
求作矩阵B,使得A(α
1
,α
2
,α
3
)=(α
1
,α
2
,α
3
)B.
选项
答案
用矩阵分解 A(α
1
,α
2
,α
3
)=(Aα
1
,Aα
2
,Aα
3
)=(α
1
+α
2
+α
3
,2α
2
+α
3
,2α
2
+3α
3
) =(α
1
,α
2
,α
3
)[*] 得B=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/rPt4777K
0
考研数学二
相关试题推荐
证明
设D是xOy平面上以(1,1)(-1,1)和(-1,-1)为顶点的三角形区域,D1是D在第一象限的部分,则(xy+cosx·siny)dxdy=________。
设在[0,+∞)上函数f(x)有连续导数,且f’(x)≥k>0,f(0)<0,证明:f(x)在(0,+∞)内有且仅有一个零点。
设f(x),g(x)在区间[-a,a](a>0)上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(-x)=A(A为常数)证明:∫-aaf(x)g(x)dx=A∫0ag(x)dx
设函数f(x)在[0,1]上具有二阶导数f"(x)≤0,试证明:∫01f(x2)dx≤
设y1,y2是二阶常系数线性齐次方程y"+p(x)y’+q(x)y=0的两个特解,则由y1(x)与y2(x)能构成该方程的通解,其充分条件是________。
设A,B为同阶可逆矩阵,则().
设(X,Y)为连续型随机向量,已知X的密度函数fX(x)及对一切x,在X=x的条件下Y的条件密度fY|X(y|x).求:(1)密度函数f(x,y);(2)Y的密度函数fY(y);(3)条件密度函数fX|Y(x|y).
设A为3阶实对称矩阵,且满足条件A2+2A=0,已知A的秩r(A)=2.当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3;
随机试题
A.机械损伤B.免疫损伤C.二者均有D.二者均无
若普通缺口在短时间内未被回补,则说明( )。
下列关于行业内竞争程度的说法,正确的是()。
关于领导的影响力主要来源于以下哪个方面()。
产生物业管理经济活动的基本动因是()
1942年延安整风行动的中心任务是()。
设函数z=(1+ey)cosx-yey,证明:函数z有无穷多个极大值点,而无极小值点.
Untilthetwentiethcentury(1900s),themajorityoftheblackpopulationlivedinthesouthernpartoftheUnitedStates.Then
设表的长度为n。在下列算法中,最坏情况下时间复杂度最高的是
AnumberofbookslikeReadingFacesandBodyLanguagehave【C1】______theindividual’stendencytobroadcastthingsthroughallm
最新回复
(
0
)