首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量β可由向量组α1,α2,…,αn线性表示,证明:表示唯一的充分必要条件是向量组α1,α2,…,αn线性无关.
设向量β可由向量组α1,α2,…,αn线性表示,证明:表示唯一的充分必要条件是向量组α1,α2,…,αn线性无关.
admin
2016-03-26
33
问题
设向量β可由向量组α
1
,α
2
,…,α
n
线性表示,证明:表示唯一的充分必要条件是向量组α
1
,α
2
,…,α
n
线性无关.
选项
答案
由条件有k
1
α
1
+k
2
α
2
+…+k
n
α
n
=β…①.必要性.设表示唯一,若λ
1
α
1
+λ
2
α
2
+…+λ
n
α
n
=0…②,①与②两端分别相加,得 (k
1
+λ
1
)α
2
+(k
2
+λ
2
)α
2
+…+(k
n
+λ
n
)α
n
=β…③,由表示唯一,比较①与③,得k
j
=k
j
+λ
j
(j=1,2,…,n)=>λ
j
=0(j=1,2,…,n),=>α
1
,α
2
,…,α
n
线性无关.充分性:设α
1
,α
2
,…,α
n
线性无关,若还有s
1
α
1
+s
2
α
2
+…+s
n
α
n
=β…④,①一④,得(k
1
一s
1
)α
1
+(k
2
一s
2
)α
2
+…+(k
n
一s
n
)α
4
=0,由α
1
,α
2
,…,α
n
线性无关,得k
j
=s
j
(j=1,2,…,n),即④式必为①式.故表示唯一.
解析
转载请注明原文地址:https://kaotiyun.com/show/rbT4777K
0
考研数学三
相关试题推荐
当前和今后一个时期制约我国发展和满足人民日益增长的美好生活需要的主要根源是
马克思说:“我们不可能从对小麦的品尝当中,来判定它是由封建社会的农奴生产的,还是由资本主义制度下雇佣劳动者生产的。”这句话表明()
材料1 北京大学援鄂医疗队全体“90后”党员: 来信收悉。在新冠肺炎疫情防控斗争中,你们青年人同在一线英勇奋战的广大疫情防控人员一道,不畏艰险、冲锋在前、舍生忘死,彰显了青春的蓬勃力量,交出了合格答卷。广大青年用行动证明,新时代的中国青年是好样的,
已知二次型f(x1,x2,x3,x4)=2x1x2+2x1x3+2x1x4+2x3x4,则二次型f(x1,x2,x3,x4)的矩阵为_______,二次型f(x1,x2,x3,x4)的秩为________.
设向量组B:β1,β2,…,βr能由向量组A:α1,α2,…,αs线性表示为:其中,K为r×s矩阵,且向量组A线性无关,证明:向量组B线性无关的充要条件是矩阵K的秩r(K)=r.
设∑与а∑满足斯托斯克斯定理中的条件,函数f(x,y,z)与g(x,y,z)具有连续二阶偏导数,f▽g表示向量▽g数乘f,即f▽g=f(gx,gy,gz)=(fgx,fgy,fgz)证明:
求下列函数的n阶导数的一般表达式:(1)y=xn+a1xn-1+a2xn-2+…+an-1x+an(a1,a2,…,an都是常数);(2)y=sin2x;(3)y=x-1/x+1;(4)y=ln1+x/1-x.
设f(x,y)在点(0,0)的某个邻域内连续,求极限
求由曲面x2+y2=az,所围区域的表面积(a>0).
验证极限存在,但不能用洛必达法则得出.
随机试题
应用利尿剂治疗慢性心力衰竭临床上应特别注意
风湿性心脏病病人预防风湿活动的关键措施是
焊接工艺评定的一般过程有()。
宾馆服务员小李在整理客房时,无意中将一位客人的手表弄掉在地板上,小李立即捡起,并连声向客人道歉,但客人却粗暴地责骂小李,忍无可忍之际,小李与客人争吵起来。小李的做法是()。
小学生梁某欺凌同学,扰乱课堂纪律,学校经过研究后决定将其开除,该校做法()。
早在1900年,第一辆电动汽车就已经上路。尽管近些年一些知名汽车厂商先后推出了各自的纯电动概念车,但这并未拉近电动汽车与现实生活之间的距离。究其原因,电动汽车的研发并非只是将传统发动机更换为电动机这般简单,而是一个庞大的研究课题,仅车用蓄电池就存在电池容量
现代班级管理强调以()为核心来建立管理机制。
putoneselfinsomeone’sshoes
减租减息是中国共产党在抗日战争时期解决农民问题的基本政策。减租又称二五减租,即规定地主的地租一律照原租额减收25%,地租的最高额不得超过37.5%。减息的原则是“分半减息”,规定放贷的年利率最高不得超过10%。下表系1942年至1944年对北岳、太行等五个
ListtheFOURmainwaysinwhichBritishcompanieshavetriedtosolvetheproblemofthelanguagebarriersincethe1960s.Writ
最新回复
(
0
)