首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs是n维向量组,r(α1,α2,…,αs)=r,则( )不正确.
设α1,α2,…,αs是n维向量组,r(α1,α2,…,αs)=r,则( )不正确.
admin
2017-10-21
43
问题
设α
1
,α
2
,…,α
s
是n维向量组,r(α
1
,α
2
,…,α
s
)=r,则( )不正确.
选项
A、如果r=n,则任何n维阳量都可用α
1
,α
2
,…,α
s
线性表示.
B、如果任何n维向量都可用α
1
,α
2
,…,α
s
线性表示,则r=n.
C、如果r=s,则任何n维向量都可用α
1
,α
2
,…,α
s
唯一线性表示.
D、如果r<n,则存在n维向量不能用α
1
,α
2
,…,α
s
线性表示.
答案
C
解析
利用“用秩判断线性表示”的有关性质.
当r=n时,任何n维向量添加进α
1
,α
2
,…,α
s
时,秩不可能增大,从而(A)正确.
如果B的条件成立,则任何n维向量组β
1
β
2
,…,β
t
都可用α
1
,α
2
,…,α
s
线性表示,从而r(β
1
β
2
,…,β
t
)≤r(α
1
,α
2
,…,α
s
).如果取β
1
β
2
,…,β
n
是一个n阶可逆矩阵的列向量组,则得n=r(β
1
β
2
,…,β
n
)≤r(α
1
,α
2
,…,α
s
)≤n,从而r(α
1
,α
2
,…,α
s
)=n,B正确.
D是B的逆否命题,也正确.
由排除法,得选项应该为C.下面分析为什么C不正确.
r=s只能说明α
1
,α
2
,…,α
s
线性无关,如果r<n,则用B的逆否命题知道存在n维向量不可用α
1
,α
2
,…,α
s
线性表示,因此C不正确.
转载请注明原文地址:https://kaotiyun.com/show/sdH4777K
0
考研数学三
相关试题推荐
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aβ1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
设α1,α2,…,αm,β1,β2,…,βn线性无关,而向量组α1,α2,…,αm,γ线性相关.证明:向量γ可由向量组α1,α2,…,αm,β1,β2,…,βn线性表示.
设f(x)在[a,b]上连续,在(a,b)内可导(a>0),且f(a)=0.证明:存在ξ∈(a,b),使得.
设b>a>0,证明:
设y=y(x),z=z(x)是由方程z=xf(x+y)和F(x,y,z)=0所确定的函数,其中f和F分别具有一阶连续导数和一阶连续偏导数,求.
设n阶实对称矩阵A的秩为r,且满足A2=A(A称为幂等阵). 求:(1)二次型XTAX的标准形;(2)|E+A+A2+…+An|的值.
设,则α1,α2,α3经过施密特正交规范化后的向量组为
设n阶矩阵A与对角矩阵合同,则A是().
设A=有三个线性无关的特征向量,求x,y满足的条件.
随机试题
新生儿胆红素脑病的早期主要临床表现为
胆小管由相邻_______细胞的质膜局部凹陷形成,其周围有_______封闭细胞间隙,防止_______外溢。
婴幼儿肺炎合并脓胸时应首先给予哪项治疗
银屑病表皮动力学改变,皮损表皮更替时间为
上腹部剑突下方称为脐下部位至耻骨上缘称为
75岁女患者,右大腿卵圆窝部反复出现圆形包块10年,此次因便秘突出包块过大,用力还纳后右下腹持续疼痛伴呕吐而求医。下腹压痛,肌紧张,叩诊肝浊音界缩小,肠鸣音消失。此病人直肠右侧壁有触痛,子宫直肠窝有液性暗区,白细胞计数2×109/L,中性粒细胞80%,
就个人汽车贷款的期限调整而言,下列情形符合相关规定的是()。
所以在这阴冷的四月里,奇迹不会发生。任凭游人扫兴和诅咒,牡丹依然______。它不苟且不俯就不妥协不媚俗,它遵循自己的花期自己的规律,它有权为自己选择每年一度的盛大节日。填入划横线部分最恰当的一项是()。
根据刑法的规定,对于尚未完全丧失辩认或者控制自己行为能力的精神病人犯罪可以从轻或者减轻处罚。()
Thereisneveragoodtimetohaveaheartattack,butthewisepersonafflictedwithcloggingarteries(动脉堵塞)mightwanttobees
最新回复
(
0
)