首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)有连续导数,F(x)=∫0x f(t)f’(2a—t)dt。证明: F(ga)-2F(A)=f2(A)-f(0)f(2a).
设函数f(x)有连续导数,F(x)=∫0x f(t)f’(2a—t)dt。证明: F(ga)-2F(A)=f2(A)-f(0)f(2a).
admin
2015-07-22
52
问题
设函数f(x)有连续导数,F(x)=∫
0
x
f(t)f’(2a—t)dt。证明:
F(ga)-2F(A)=f
2
(A)-f(0)f(2a).
选项
答案
F(2a)一2F(a)一∫
0
2a
f(t)f’(2a一t)dt一2∫
0
a
f(t)f’(2a—t)dt =∫
0
2a
f(t)f’(2a—t)dt—∫
0
a
f(t)f’(2a—t)dt, 其中∫
0
2a
f(t)f’(2a—t)dt=f
2
(a)一f(0)f(2a)+∫
a
2a
f(2a—t)f’(t)dt,所以 原式=f
2
(a)一f(0)f(2a)+∫
a
2a
f(2a—t)f’(t)dt—∫
0
a
f(t)f’(2a—t)dt, 又∫
a
2a
f(2a一t)f’(t)dt[*]∫
0
a
f(u)f’(2a一u)du一∫
0
a
f(t)f’(2a一t)dt,所以, F(2a)一2F(a)一f
2
(a)一f(0)f(2a).
解析
转载请注明原文地址:https://kaotiyun.com/show/t0U4777K
0
考研数学三
相关试题推荐
新华社北京5月23日电,日前,国务院总理李克强主持召开国务院常务会议,进一步部署稳经济一揽子措施,努力推动经济回归正常轨道、确保运行在合理区间。会议决定实施6方面措施,分别是:财政及相关政策、金融政策、()、促消费和有效投资、保能源安全
据新华社2022年4月18日报道,国家统计局新闻发言人、国民经济综合统计司司长付凌晖表示,3月份以来世界局势复杂演变,国内疫情影响持续,有些突发因素()。下阶段,要科学统筹疫情防控和经济社会发展,坚持稳字当头、稳中求进,把(
我国协商民主以()和()为支撑。①根本政治制度②中国特色社会主义制度③基本政治制度④民主协商
毛泽东在《中国的红色政权为什么能够存在?》一文中曾详尽地讲述了中国红色政权发生和存在的五点原因,红军第五次反“围剿”的失败充分证明了()。
已知二次型f(x1,x2,x3,x4)=2x1x2+2x1x3+2x1x4+2x3x4,则二次型f(x1,x2,x3,x4)的矩阵为_______,二次型f(x1,x2,x3,x4)的秩为________.
利用定积分的几何意义求出下列积分:
设F(x+z,y+z)可微分,求由方程F(x+z,y+z)-1/2(x2+y2+z2)=2确定的函数z=z(x.y)的微分出与偏导数
下列函数在哪些点处间断,说明这些间断点的类型,如果是可去间断点,则补充定义或重新定义函数在该点的值而使之连续:
按两种不同次序化二重积分为二次积分,其中D为:(1)由直线y=x及抛物线y2=4x所围成的闭区域;(2)由y=0及y=sinx(0≤x≤π)所围成的闭区域;(3)由直线y=x,x=2及双曲线y=1/x(x>0)所围成的闭区域;(4)由(x-1)2+
设1≤a<b≤e,证明:函数f(x)=xln2x满足不等式0<f(a)+f(b)-<(e一1)(b-a)
随机试题
哪种情况会出现免疫组化检测假阳性结果
粒子是一个复杂的分散体系,它
①早期人们在地球上通过光学望远镜观察火星,看到火星上阴影的变化,误以为火星上有河流和植物,甚至还有“火星人”的存在②长久以来,很多人也一直在幻想这个类地行星可以成为地球人移民外星的第一个目的地③人类最初产生对火星的兴趣几乎全都是出于误解
下列关于预付款担保的说法中,正确的有()。
下列人境货物需经国家检验检疫机关审批后方可报检:( )
声画对位
设幂级数anxn的收敛半径为3,则幂级数nan(x-1)n+1的收敛区间为________。
Whomostlikelyisgivingthetalk?
Highereducationisn’tforeveryone,andpeoplehaveavarietyofpathstochoosefromoncetheygraduatefromhighschool.They
A、Networking.B、TheInternet.C、Thejobmarket.D、Tradeorganizations.A根据句(8)可知,女嘉宾认为最好的找工作方式是networking,即通过人际关系网找工作,因此A为答案。
最新回复
(
0
)