首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求二元函数z=f(x,y)=x2y(4-x-y)在由直线x+y=6,x轴和y轴所围成的闭区域D上的极值、最大值与最小值.
求二元函数z=f(x,y)=x2y(4-x-y)在由直线x+y=6,x轴和y轴所围成的闭区域D上的极值、最大值与最小值.
admin
2016-09-13
114
问题
求二元函数z=f(x,y)=x
2
y(4-x-y)在由直线x+y=6,x轴和y轴所围成的闭区域D上的极值、最大值与最小值.
选项
答案
由方程组[*]得x=0(0≤y≤b)及点(4,0),(2,1)。而点(4,0)及线段x=0(0≤y≤b)在D的边界上,只有点(2,1)在D内部,可能是极值点. fˊˊ
xx
=8y-6xy-2y
2
,fˊˊ
xy
=8x-3x
2
-4xy,fˊˊ
yy
=-2x
2
. 在点(2,1)处, A=[*]=-6,B=[*]=-4,C=[*]=-8,B
2
-AC=-32<0, 且A<0,因此点(2,1)是z=f(x,y)的极大值点,极大值f(2,1)=4. 在D的边界x=0(0≤y≤6)及y=0(0≤x≤6)上,f(x,y)=0.在边界x+y=6上,y=6-x代入f(x,y)中得,z=2x
3
-12x
2
(0≤x≤6). 由zˊ=6x
2
-24x=0得x=0,x=4.在边界x+y=6上对应x=0,4,6处z的值分别为: z|
x=0
=2x
3
-12x
2
|
x=0
=0,z|
x=4
=2x
3
-12x
2
|
x=4
=-64,z|
x=6
=2x
3
-12x
2
|
x=6
=0 因此知z=f(x,y)在边界上的最大值为0,最小值为f(4,2)=-64. 将边界上最大值和最小值与驻点(2,1)处的值比较得,z=f(x,y)在闭区域D上的最大值为f(2,1)=4,最小值为f(4,2)=-64.
解析
转载请注明原文地址:https://kaotiyun.com/show/txT4777K
0
考研数学三
相关试题推荐
-0.02
求曲线x2+z2=10,y2+z2=10在点(1,1,3)处的切线和法平面方程.
设∑与а∑满足斯托斯克斯定理中的条件,函数f(x,y,z)与g(x,y,z)具有连续二阶偏导数,f▽g表示向量▽g数乘f,即f▽g=f(gx,gy,gz)=(fgx,fgy,fgz)证明:
设,试用定义证明f(x,y)在点(0,0)处可微分.
将函数f(x)=e2x,x∈[0,π]展开成余弦级数.
求下列参数方程所确定的函数的二阶导数d2y/dx2.设f〞(t)存在且不为零.
设其中g(x)有二阶连续导数,且g(0)=1,g’(0)=-1.讨论f’(x)在(-∞,+∞)上的连续性.
设其中g(x)有二阶连续导数,且g(0)=1,g’(0)=-1.求f’(x);
试确定常数A,B,C的值,使得ex(1+Bx+Cx2)=1+Ax+o(x3),其中o(x3)是当x→0时比x3高阶的无穷小.
设函数f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,令un=f(n)(n=1,2,…),则下列结论正确的是
随机试题
由于CO2焊的CO2气体具有氧化性,可以抑制()气孔的产生。
国际企业制定人力资源计划的首要步骤是【】
鼓室隔分隔的结构是
A.初始血尿B.终末血尿C.全程血尿D.尿道溢血E.镜下血尿泌尿系结石多表现为
A、1~2hB、30minC、20minD、10~15minE、5min一般中药一煎时间为()。
我国水资源严重缺乏,人均水资源量约为()m3。
会计工作的好坏除了依赖于会计人员的职业能力因素外,极大地依赖于企业内部控制制度的严密性。
下列关于个人住房按揭贷款申请条件的说法中,正确的是()。
(2016年)作家吴某任职于国内某公司,2015年12月有关收入情况如下:(1)基本工资7200元,全年一次性奖金24000元;(2)小说再版稿酬30000元(该小说于当年2月首次出版,已获稿酬50000元);(3)国内公开拍卖自己的小说手稿所得12
台湾问题性质不同于香港问题和澳门问题。台湾问题的实质是()
最新回复
(
0
)