首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(aij)是秩为n的n阶实对称矩阵,Aij是|A|中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,…,xn)= (Ⅰ)记X=(x1,x2,…,xn)T,试写出二次型f(x1,x2,…,xn)的矩阵形式; (Ⅱ
设A=(aij)是秩为n的n阶实对称矩阵,Aij是|A|中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,…,xn)= (Ⅰ)记X=(x1,x2,…,xn)T,试写出二次型f(x1,x2,…,xn)的矩阵形式; (Ⅱ
admin
2016-10-20
106
问题
设A=(a
ij
)是秩为n的n阶实对称矩阵,A
ij
是|A|中元素a
ij
的代数余子式(i,j=1,2,…,n),二次型f(x
1
,x
2
,…,x
n
)=
(Ⅰ)记X=(x
1
,x
2
,…,x
n
)
T
,试写出二次型f(x
1
,x
2
,…,x
n
)的矩阵形式;
(Ⅱ)判断二次型g(X)=X
T
AX与f(X)的规范形是否相同,并说明理由.
选项
答案
(Ⅰ)因为r(A)=n,故A是可逆的实对称矩阵,于是(A
-1
)
T
=(A
T
)
-1
=A
-1
,即A
-1
是实对称矩阵,那么[*]是对称的,因而A
*
是实对称矩阵,可见A
ij
=A
ji
(i,j=1,2,…,n),于是 [*] 因此,二次型f的矩阵表示为X
T
A
-1
X,其二次型矩阵为A
-1
. (Ⅱ)因为A,A
-1
均是可逆的实对称矩阵,且(A
-1
)
T
AA
-1
=(A
-1
)
T
E=(A
T
)
-1
=A
-1
. 所以A与A
-1
合同.于是g(X)与f(X)有相同的规范形.
解析
按定义,若f(X)=X
T
BX,其中B是实对称矩阵,则X
T
BX就是二次型f的矩阵表示,而两个二次型的规范形是否一样关键是看正负惯性指数是否一致.
转载请注明原文地址:https://kaotiyun.com/show/uaT4777K
0
考研数学三
相关试题推荐
[*]
[*]
[*]
[*]
一个袋子中装有a+b个球,其中a个黑球,b个白球,随意地每次从中取出一球(不放回),求前i次中恰好取k个黑球的概率.
求下列隐函数的指定偏导数:
将下列函数展成麦克劳林级数:
计算下列极限:
设y=f(x)在x=x。的某邻域内具有三阶连续导数,如果fˊ(x。)=0,f〞(x。)=0,而f〞ˊ(x。)≠0,试问x=x。是否为极值点?为什么?又(x。,f(x。))是否为拐点?为什么?
y=2x的麦克劳林公式中xn项的系数是_________.
随机试题
现代社会的三大分工是______、______、______。
Michael’snewhouselookslikeapalace,compared______hisoldone.
A.瘤胃B.网胃C.瓣胃D.皱胃E.前胃有蜂巢胃之称的是
关于上颌结节麻醉的特点不正确的是
A.溃疡孤立存在,表面微凹,少量黄色渗出,周缘充血B.溃疡深达黏膜下,边缘高起,咽部及口角可见瘢痕C.溃疡与刺激物相邻,周缘白色水肿及角化D.溃疡较深,边缘不整,基底有浸润E.溃疡浅表,基底暗红色桑葚样肉芽肿,边缘鼠啮状压疮性溃疡的溃疡特点为
五脏共同的生理特点是奇恒之府的特点是
甲委托乙前往丙厂采购男装,乙觉得丙生产的女装市场看好,便自作主张以甲的名义向丙订购。丙未问乙的代理权限,便与之订立了买卖合同。根据《合同法》的规定,下列选项中,正确的是()。
修筑公路时通常用于公路接缝,密封性能较好的密封材料是()。
关于材料和设备价格调整,下列说法正确的是()。
贵州省年平均水资源总量居全国第()位。
最新回复
(
0
)