首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
外语
Extremophiles’ are life forms that can live in
Extremophiles’ are life forms that can live in
admin
2014-10-30
34
问题
Extremophiles’ are life forms that can live in
Hello, everybody, and welcome to the sixth of our Ecology evening classes. Nice to see you all again. As you know from the programme, today I want to talk to you about some research that is pushing back the frontiers of the whole field of ecology. And this research is being carried out in the remoter regions of our planet... places where the environment is harsh and—until recently—it was thought that the conditions couldn’t sustain life of any kind. But, life forms are being found—and these have been grouped into what is now known as extremophiles—that is, organisms that can survive in the most extreme environments. And these discoveries may be setting a huge challenge for the scientists of the future, as you’ll see in a minute.
Now, the particular research I want to tell you about was carried out in Antarctica—one of the coldest and driest places on Earth. But a multinational team of researchers—from the US, Canada and New Zealand—recently discovered colonies of microbes in the soil there, where no one thought it was possible. Interestingly enough, some of the colonies were identified as a type of fungus called Beauveria Bassiana—a fungus that lives on insects. But where are the insects in these utterly empty regions of Antarctica? The researchers concluded that this was clear evidence that these colonies were certainly not new arrivals... they might’ve been there for centuries, or even millennia—possibly even since the last Ice Age! Can you imagine their excitement?
Now, some types of microbes had previously been found living just a few millimetres under the surface of rocks— porous, Antarctic rocks... but this was the first time that living colonies had been found surviving—erm—relatively deeply in the soil itself, several centimetres down in fact.
So, the big question is: how can these colonies survive there? Well, we know that the organisms living very near the rock surface can still be warmed by the sun, so they can survive in their own microclimate... and this keeps them from freezing during the day. But this isn’t the case for the colonies that are hidden under the soil.
In their research paper, this team suggested that the very high amounts of salt in the soil might be the clue—because this is what is preventing essential water from freezing. The team found that the salt concentration increased the deeper down they went in the soil. But while they had expected the number of organisms to be fewer down there, they actually found the opposite. In soil that had as much as 3,000 parts of salt per million, relatively high numbers of microbes were present—which seems incredible! But the point is that at those levels of salt, the temperature could drop to minus 56 degrees before frost would cause any damage to the organisms.
This relationship between microbes and salt—at temperatures way below the normal freezing point of water—is a really significant breakthrough. As you all know, life is dependent on the availability of water in liquid form, and the role of salt at very low temperatures could be the key to survival in these kinds of conditions. Now the process at work here is called supercooling—and that’s usually written as one word—but it isn’t really understood as yet, so, there’s a lot more for researchers to work on. However, the fact that this process occurs naturally in Antarctica, may suggest that it might occur in other places with similar conditions, including on our neighbouring planet, Mars. So, you can start to see the wider implications of this kind of research. In short, it appears to support the growing belief that extraterrestrial life might be able to survive the dry, cold conditions on other planets after all. Not only does this research produce evidence that life is possible there, it’s also informing scientists of the locations where it might be found. So all of this might have great significance for future unmanned space missions.
One specialist on Mars confirms the importance...
选项
A、isolated areas.
B、hostile conditions.
C、new habitats.
答案
B
解析
转载请注明原文地址:https://kaotiyun.com/show/vvAO777K
本试题收录于:
雅思听力题库雅思(IELTS)分类
0
雅思听力
雅思(IELTS)
相关试题推荐
Inearly-twentieth-centuryEngland,itwasfashionabletoclaimthatonlyacompletelynewstyleofwritingcouldaddressaworl
Projectingtheideaofadistinctivefemaledemandinseventeenth-andeighteenth-centuryEnglandwasagroundbreakingdeparture
Projectingtheideaofadistinctivefemaledemandinseventeenth-andeighteenth-centuryEnglandwasagroundbreakingdeparture
ElizabethBishop’sCompletePoems(1927-1979)hascometoseemtomostofitsreaderssoachievedandsufficientasalife’swork
Recentlyanunusuallyhighnumberofdolphinshavebeenfounddeadofinfectiousdiseases,andmostofthesehadabnormallyhi
Inaphysicaleducationclass,20studentsweretestedonarcherytargetshooting.Thesestudentswerethengivenatwo-daytrai
Thechartshowsthenumberofdaystheaverageemployeehasoffworkperyearinfourdifferentcountries.Summarisetheinfor
Youshouldspendabout20minutesonthistask.Thebargraphgivesinformationaboutthenumberoflibrarybooksborrowedf
Nowadays,moreandmoreworkcouldbecompletedbythemachineorrobotswithartificialintelligence.Dothepositiveeffectso
Completethesentencesbelow.WriteONEWORDONLYforeachanswer.HowtheextremophilessurviveAccesstothesun’sheatcanc
随机试题
网络文件系统(NFS)中的客户机是通过_______的方法访问服务器方的资源。
现行国籍法规定,外国人或无国籍人申请加入中国国籍,最后审批权属于中华人民共和国【】
“禁止缔约方在出口方面实行倾销,并授权缔约方在其某项工业由于倾销造成重大损害或产生重大威胁时,可征收反倾销税。”的规定是出于世界贸易组织的()
糖尿病最易发生的感染是()
门脉性肝硬化形成假小叶,其病理特点不正确的是
自然坡度为16%时,应选择()种设计场地连接形式。
除股份有限公司以外的其他类型的企业,在企业创立时,投资者认缴的出资额与注册资本一致,一般不会产生资本溢价。()
直接篡改财务会计报告的数据,使财务会计报告不真实,借以误导、欺骗会计资料使用者的行为属于()。
对一批产品进行检验,发现2个产品有A类不合格,3个产品有A类、B类不合格,5个产品有B类、C类不合格,可得出该批产品中有()。
1933年7月,胡适在芝加哥大学作《中国的文艺复兴》系列演讲时,解释到五四新文化运动与欧洲的文艺复兴运动两者“有惊人的相似之处”。五四运动和文艺复兴的共同之处是()。
最新回复
(
0
)