首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n实矩阵,AT是A的转置矩阵,证明方程组(Ⅰ):Ax=0和(Ⅱ):ATAx=0是同解方程组.
设A是m×n实矩阵,AT是A的转置矩阵,证明方程组(Ⅰ):Ax=0和(Ⅱ):ATAx=0是同解方程组.
admin
2016-10-20
97
问题
设A是m×n实矩阵,A
T
是A的转置矩阵,证明方程组(Ⅰ):Ax=0和(Ⅱ):A
T
Ax=0是同解方程组.
选项
答案
如果α是(Ⅰ)的解,那么Aα=0,而A
T
Aα=A
T
0=0,可见α是(Ⅱ)的解. 如果α=(a
1
,a
2
,…,a
n
)
T
是(Ⅱ)的解,即A
T
Aα=0,则α
T
A
T
Aα=0[*](Aα)
T
(Aα)=0. 不妨设 Aα=(b
1
,b
2
,…,b
m
)
T
,则 (Aα)
T
(Aα)=b
1
2
+b
2
2
+…+b
m
2
=0.从而b
1
=b
2
=…=b
m
=0,即Aα=0,所以(Ⅱ)的解必是(Ⅰ)的解.因此,(Ⅰ)与(Ⅱ)是同解方程组.
解析
所谓方程组同解即(Ⅰ)的解全是(Ⅱ)的解,(Ⅱ)的解也全是(Ⅰ)的解,显然本题的难点是如何证(Ⅱ)的解必是(Ⅰ)的解.
转载请注明原文地址:https://kaotiyun.com/show/wgT4777K
0
考研数学三
相关试题推荐
某数学家有两盒火柴,每一盒装有N根.每次使用时,他在任一盒中取一根,问他发现一盒空,而另一盒还有k根火柴的概率是多少?
一个袋子中装有5个红球,3个白球,2个黑球,从中任取3个球,求其中恰有一个红球、一个白球和一个黑球的概率.
考虑一家商场某日5位顾客购买洗衣机的类型(直筒或滚筒).设P(5位顾客全部购买滚筒洗衣机)=0.0768,P(5位顾客全部购买直筒洗衣机)=0.0102,那么两类洗衣机都至少卖出一台的概率是多大?
袋中有a只黑球,b只白球,现把球一只一只摸出,求第k次摸出黑球的概率(1≤k≤a+b).
二次型f(x1,x2,x3)=(x1+ax2-2x3)2+(2x2+3x3)2+(x1+3x2+ax3)2正定的充分必要条件为________.
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是().
设A与B均为n,阶矩阵,且A与B合同,则().
设n阶实对称矩阵A满足条件A2+6A+8E=O,且A+tE是正定矩阵,则t的取值范围为_______.
(1)证明三个向量共面的充要条件是其中一个向量可以表示为另两个向量的线性组合.(2)设a=(ax,ay,az),b=(b,by,bz),且a×b≠0,证明:过点Mo(x,yo,zo),并且以a×b为法向的平面具有如下形式的参数方程:
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(I)AX=O和(Ⅱ)ATAX=0必有().
随机试题
SocratesisoftenreferredtoasoneofthefoundersofWesternphilosophy,andyethewrotenothing,establishednoschool,and
男性,50岁,急性肾衰少尿期,病人出现呼吸困难,头痛、头晕,软瘫,心律不齐,心动过缓,腹胀,应考虑
评价人群健康状况首先要考虑的是
A.皮肤下肉芽肿病灶内有大片干酪样坏死B.肉芽肿内主要为类上皮细胞和淋巴细胞,极少有干酪样坏死C.以泡沫细胞为主构成的肉芽肿,无类上皮细胞D.皮肤血管周围灶性淋巴细胞浸润,无肉芽肿E.肉芽肿内类上皮细胞和朗格汉斯巨细胞较少,局部凝固性坏死内见血管轮
关于女性内生殖器的神经支配,下列哪项不正确
属于细菌特殊结构的是
患者,男,39岁。自诉2天来每次大便前出血,直出四射,血色鲜红。舌红,脉数。治疗应选用
A.民事责任B.刑事责任C.行政处罚D.行政处分责令停产停业属于()。
下列不属于法的基本特征的有()。
施工现场通风与空调工程安装同机电安装其他专业工程协调配合,包括各类管线的()及施工顺序的确定。
最新回复
(
0
)