首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置. 证明: A2=A的充要条件是ξTξ=1;
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置. 证明: A2=A的充要条件是ξTξ=1;
admin
2014-07-17
94
问题
设A=E-ξξ
T
,其中层为n阶单位矩阵,ξ是n维非零列向量,ξ
T
是ξ的转置.
证明:
A
2
=A的充要条件是ξ
T
ξ=1;
选项
答案
A
2
=(E-ξξ
T
)(E-ξξ
T
)=E-2ξξ
T
+ξξ
T
ξξ
T
=E-ξξ
T
+ξ(ξ
T
ξ)ξ
T
-ξξ
T
=A+(ξ
T
ξ)ξξ
T
-ξξ
T
, 那么A
2
=A≡(ξ
T
ξ-1)ξξ
T
=0. 因为ξ是非零列向量,ξξ
T
≠0,故A
2
=A≡ξ
T
ξ-1=0即ξ
T
ξ=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/whU4777K
0
考研数学三
相关试题推荐
垄断资本主义国家的工人持有垄断企业的少量股票表明
材料1历史已经并将继续证明,只有社会主义才能救中国,只有坚持和发展中国特色社会主义才能实现中华民族伟大复兴。国内外形势正在发生深刻复杂变化,我国发展仍处于重要战略机遇期。我们具备过去难以想象的良好发展条件,但也面临着许多前所未有的困难和挑战。中国
材料1青春由磨砺而出彩,人生因奋斗而升华。面对突如其来的新冠肺炎疫情,全国各族青年积极响应党的号召,踊跃投身疫情防控人民战争、总体战、阻击战,不畏艰险、冲锋在前、真情奉献,展现了当代中国青年的担当精神,赢得了党和人民高度赞誉。今年是决胜全面小康、
《建设高标准市场体系行动方案》指出,要制定出台()放宽市场准入特别措施。
据新华社2月17日消息,全国一体化大数据中心体系完成总体布局设计,“()”工程正式全面启动。
人民代表大会制度建立60多年来,在实践中不断得到巩固和发展,展现出蓬勃生机活力。历史充分证明,人民代表大会制度是
设向量组α1,α3,α3线性无关,问常数a,b,c满足什么条件时,aα1-α2,bα2-α3,cα3-α1线性相关?
设n阶实对称矩阵A满足条件A2+6A+8E=O,且A+tE是正定矩阵,则t的取值范围为_______.
用适当的变换将下列方程化为可分离变量的方程,并求出通解:;(2)(x+y)2yˊ=1;(3)xyˊ+y=yln(xy);(4)xyˊ+x+sin(x+y)=0.
设二随机变量(X,Y)服从二维正态分布,则随机变量U=X+Y与V=X-Y不相关的充分必要条件为().
随机试题
企业在设计销售与收款业务的内部会计控制制度时,销售与收款业务的不相容岗位是指()
男性,30岁,因车祸引起右胸部损伤,极度呼吸困难,紫绀,呼吸音消失,并有严重的皮下气肿,判断为张力性气胸,急救应立即()
尚某在一起海难事故中生死不明,两年后其父母请求法院宣告尚某死亡,但其妻害怕分割尚某财产,不同意宣告死亡,法院正确的做法是()。
债务转让,自()时发生效力。
Afteryuppiesanddinkies,anewcreaturefromadlandstalkstheblock.TheNYLON,anacronymlinkingNewYorkandLondon,isa
下列关于队列的叙述中正确的是______.
翠湖不大,绕着转一圈也【138】半个小时。我平日深居简出,很不喜欢运动。可是常识告诉我,这种年纪,这种职业,一点儿不动是不行的。于是晚饭后绕着翠湖走一圈,便成了我每天【139】的运动了。早晚在翠湖边跑步或散步的人不少,男女老少都有。但似乎都是【140】,没
Alinguisticstudyis______ifitdescribesandanalysesfactsobserved.
Somepeoplearguethatself-plagiarism(自我剽窃)isimpossiblebydefinitionbecauseplagiarismistheftandpeoplecannotstealfrom
Topuniversitieshavebeencalledontopublishlistsof"banned"A-levelsubjectsthatmayhavepreventedthousandsofstatesc
最新回复
(
0
)