首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
假设某季节性商品,适时地售出1千克可以获利s元,季后销售每千克净亏损t元.假设一家商店在季节内该商品的销售量X(千克)是一随机变量,并且在区间(a,b)内均匀分布.问季初应安排多少这种商品,可以使期望销售利润最大?
假设某季节性商品,适时地售出1千克可以获利s元,季后销售每千克净亏损t元.假设一家商店在季节内该商品的销售量X(千克)是一随机变量,并且在区间(a,b)内均匀分布.问季初应安排多少这种商品,可以使期望销售利润最大?
admin
2016-09-19
82
问题
假设某季节性商品,适时地售出1千克可以获利s元,季后销售每千克净亏损t元.假设一家商店在季节内该商品的销售量X(千克)是一随机变量,并且在区间(a,b)内均匀分布.问季初应安排多少这种商品,可以使期望销售利润最大?
选项
答案
根据条件随机变量X的概率密度为 [*] 以Y=P(h)表示“销售利润”,它与季初应安排商品的数量h有关.由条件知 [*] 为求使期望利润最大的h,我们计算销售利润Y=P(h)的数学期望.为此,首先注意到: a<h<b,销售利润Y=P(h)的数学期望为 EY=E[P(h)]=∫
a
h
[sx-(h-x)t]f(x)dx+∫
h
b
shf(x)dx =∫
a
h
[(s+t)x-ht]f(x)dx+sh∫
h
b
f(x)dx =(s+t)∫
a
h
xf(x)dx-ht∫
a
h
f(x)dx+sh[1-∫
a
h
f(x)dx] =(s+t)[∫
a
h
xf(x)dx-h∫
a
h
f(x)dx]+sh. 对h求导并令其等于0,得 [*]=(s+t)[hf(h)-hf(h)-∫
a
h
f(x)dx]+s=-(s+t)∫
a
h
f(x)dx+s=0, ∫
a
h
f(x)dx=[*] 于是,季初安排h
0
千克商品,可以使期望销售利润最大.
解析
转载请注明原文地址:https://kaotiyun.com/show/wkT4777K
0
考研数学三
相关试题推荐
43/2800.
[*]
设向量组(Ⅰ):α1=(α11,α21,α31)T,α2=(α12,α22,α32)T,α3=(α12,α23,α33)T,向量组(Ⅱ):β1=(α11,α21,α31,α41)T,β2=(α12,α22,α32,α42)T,β3=(α12,α2
一男子到闹市区去,他遇到背后袭击并被抢劫,他断言凶手是个白人,然而当调查这一案件的法院在可比较的光照条件下多次重复展现现场情况时,受害者正确识别袭击者种族的次数约占80%,袭击者确实是白人的概率是0.8吗?试给出说明.
一袋中装有a个黑球,b个白球.先后两次从袋中各取一球(不放回).(1)已知第一次取出的是黑球,求第二次取出的仍是黑球的概率;(2)已知第二次取出的是黑球,求第一次取出的也是黑球的概率;(3)已知取出的两个球中有一个是黑球,求另
某城有N辆车,车牌号从1到N,某观察员在某地把所遇到的n辆车的牌号抄下(可能重复抄到车牌号),问为抄到最大号码正好k的概率(1≤k≤N)是多少?
设A与B均为n,阶矩阵,且A与B合同,则().
若函数f(x)在(a,b)内具有二阶导数,且f(x1)=f(x2)=f(x3),其中a<x1<x2<x3<b,证明:在(x1,x3)内至少有一点ε,使得f〞(ε)=0.
已知A(1,-1,2),B(5,-6,2),C(1,3,-1),求(1)同时与垂直的单位向量;(2)△ABC的面积;(3)从顶点B到边AC的高的长度.
设3阶矩阵A的特征值为2,3,λ.若行列式|2A|=-48,则λ=________.
随机试题
心理过程是人脑能动地反映客观事物的过程,它包括()
计算机病毒是一种__。
不属于癌前情况的是
一般在流通加工中耗用的电力、燃料、油料及车间经费等费用应计入物流货物清单投标价格中的()。
所有检验批和分项工程均应由()组织验收。
公路监控系统主要是实时收集道路状况、(),监视道路交通状况以及交通疏导等以保证行车安全。
下列关于不同类型基金的风险的说法中,正确的是()。
旅游团抵达目的地机场后,清点行李的工作应由()负责。
ChicagoPublicSchoolsaregoingtogreatlengthstohireteachers—nowtheschooldistrictrecruitsteachersfromothercountrie
Thegeneralopinionisthatheis______tocomplain.
最新回复
(
0
)