首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次线性方程组(2E-A)x=0有通解x=kξ1=k(-1,1,1)T,k是任意常数,其中A是二次型f(x1,x2,x3)=xTAx对应的矩阵,且r(A)=1. 求方程组Ax=0的通解.
设齐次线性方程组(2E-A)x=0有通解x=kξ1=k(-1,1,1)T,k是任意常数,其中A是二次型f(x1,x2,x3)=xTAx对应的矩阵,且r(A)=1. 求方程组Ax=0的通解.
admin
2016-04-29
91
问题
设齐次线性方程组(2E-A)x=0有通解x=kξ
1
=k(-1,1,1)
T
,k是任意常数,其中A是二次型f(x
1
,x
2
,x
3
)=x
T
Ax对应的矩阵,且r(A)=1.
求方程组Ax=0的通解.
选项
答案
A是二次型的对应矩阵,故A
T
=A,由(2E-A)x=0有通x=kξ
1
=k(-1,1,1)
T
,知A有特征值λ
2
=2,且A的对应于λ
1
=2的线性无关的特征向量为 ξ
1
=(-1,1,1)
T
. 由于r(A)=1,故知λ=0是A的二重特征值.Ax=0的非零解向量即是A的对应于λ=0的特征向量. 设λ
2
=λ
3
=0所对应的特征向量为手ξ=(x
1
,x
2
,x
3
)
T
,由于实对称矩阵不同特征值对应的特征向量相互正交,故ξ与ξ
1
相互正交. 由ξ
1
T
=-x
1
+ x
2
+ x
3
=0,解得ξ
2
=(1,1,0)
T
,ξ
3
=(1,0,1)
T
. 故方程组Ax=0的通解为k
2
ξ
2
+ k
3
ξ
3
,k
2
,k
3
为任意常数
解析
转载请注明原文地址:https://kaotiyun.com/show/x1T4777K
0
考研数学三
相关试题推荐
推动建设新型国际关系,是党中央立足时代发展潮流和我国根本利益作出的战略选择,反映了中国人民和世界人民的共同心愿。新型国际关系,“新”在()。
全面建成小康社会标志着我们跨过了实现现代化建设第三步战略目标必经的承上启下的重要发展阶段。全面小康有更高的标准、更丰富的内涵、更全面的要求,即经济更加发展、民主更加健全、科教更加进步、文化更加繁荣、社会更加和谐、人民生活更加殷实。全面小康要求(
在我国确立社会主义基本制度具有十分重大的意义,因为社会主义制度的确立()。
中国武装斗争实质是无产阶级领导的以农民为主体的革命战争,其原因是()。
求由下列曲线所围成的闭区域D的面积:(1)D是由直线ax+by=r1,ax+by=r2,cx+dy=s1,cx+dy=s2所围成的平行四边形闭区域,其中r1<r2,s1<s2,ad-bc≠0;(2)D是由曲线xy=4,xy3=4,xy=8,y3=15所
求下列隐函数的指定偏导数:
设准线方程为,母线的方向向量为{-1,0,1},求该柱面方程.
设向量组α1,α2,…,αs线性无关,作线性组合β1=α1+μ1αs,β2=α2+μ2αs,…,βs-1=αs-1+μs-1αs,则向量组β1,β2,…,βs-1线性无关,其中s≥2,μi为任意实数.
设n维向量α=(a,0,…,0,a)Ta>0,E为n阶单位矩阵,矩阵A=E-ααT,B=其中A的逆矩阵为B,则a=________.
掷一枚不均匀的硬币,设正面出现的概率为P,反面出现的概率q为q=1一P,随机变量X为一直掷到正面和反面都出现为止所需要的次数,则X的概率分布刀__________.
随机试题
IsBeautyaGoodThing?Beautyhasalwaysbeenregardedassomethingpraiseworthy(值得称赞的).Almosteveryonethinksattractive
设f(x)在x=x0处可导,则f’(x0)=().
简述急性胰腺炎的病理变化。
A.SDB.SMMC.SM2D.SMDE.SQ脑部细菌感染可选用的磺胺类药物是
案例2012年6月6日B炼油厂油罐区的2号汽油罐发生火灾爆炸事故,造成1人死亡、3人轻伤,直接经济损失420万元。该油罐为拱顶罐,容量200m3。油罐进油管从罐顶接入罐内,但未伸到罐底。罐内原有液位计,因失灵已拆除。2012年5月20日,油罐完
行政机关实施行政许可,擅自收费或者不按照法定项目和标准收费的,由()责令退还非法收取的费用。
设有编号为1、2、3、…、10的10张背面向上的纸牌,现有10名游戏者,第1名游戏者将所有编号是1的倍数的纸牌翻成另一面向上的状态,接着第2名游戏者将所有编号是2的倍数的纸牌翻成另一面向上的状态,……,第n名(n≤10)游戏者,将所有编号是n的倍数的纸牌翻
赠与合同是()合同。
下列对IPv6地址的表示中,错误的是()。
Anewstudyshowsthatregularlyeatingfastfoodisn’tjustbadforyourwaistline,itcanalsodamageyourliverinwaysthat
最新回复
(
0
)