首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次线性方程组(2E-A)x=0有通解x=kξ1=k(-1,1,1)T,k是任意常数,其中A是二次型f(x1,x2,x3)=xTAx对应的矩阵,且r(A)=1. 求方程组Ax=0的通解.
设齐次线性方程组(2E-A)x=0有通解x=kξ1=k(-1,1,1)T,k是任意常数,其中A是二次型f(x1,x2,x3)=xTAx对应的矩阵,且r(A)=1. 求方程组Ax=0的通解.
admin
2016-04-29
65
问题
设齐次线性方程组(2E-A)x=0有通解x=kξ
1
=k(-1,1,1)
T
,k是任意常数,其中A是二次型f(x
1
,x
2
,x
3
)=x
T
Ax对应的矩阵,且r(A)=1.
求方程组Ax=0的通解.
选项
答案
A是二次型的对应矩阵,故A
T
=A,由(2E-A)x=0有通x=kξ
1
=k(-1,1,1)
T
,知A有特征值λ
2
=2,且A的对应于λ
1
=2的线性无关的特征向量为 ξ
1
=(-1,1,1)
T
. 由于r(A)=1,故知λ=0是A的二重特征值.Ax=0的非零解向量即是A的对应于λ=0的特征向量. 设λ
2
=λ
3
=0所对应的特征向量为手ξ=(x
1
,x
2
,x
3
)
T
,由于实对称矩阵不同特征值对应的特征向量相互正交,故ξ与ξ
1
相互正交. 由ξ
1
T
=-x
1
+ x
2
+ x
3
=0,解得ξ
2
=(1,1,0)
T
,ξ
3
=(1,0,1)
T
. 故方程组Ax=0的通解为k
2
ξ
2
+ k
3
ξ
3
,k
2
,k
3
为任意常数
解析
转载请注明原文地址:https://kaotiyun.com/show/x1T4777K
0
考研数学三
相关试题推荐
车尔尼雪夫斯基曾经写到:“历史的道路不是涅瓦大街上的人行道,它完全是在田野中前进的,有时穿过尘埃,有时穿过泥泞,有时横渡沼泽,有时行经丛林。”这说明()。
“任何英雄人物的历史作用不能超出他们所处历史条件所许可的范围”,这是()。
在社会道德建设中具有基础性作用的是()。
法律权利是各种权利中十分重要的权利,具有的特征有()。
设n阶实对称矩阵A满足条件A2+6A+8E=O,且A+tE是正定矩阵,则t的取值范围为_______.
设f(x)在[a,b]上连续,且f(x)>0,x∈[a,b],证明:(1)Fˊ(x)≥2;(2)方程F(x)=0在区间(a,b)内有且仅有一个根.
求下列函数的导数:(1)y=2x4-3/x2+5;(2)y=e2x+2x+7;(3)y=ln2x+2lgx;(4)y=3secx+cotx;(5)y=sinx·tanx;(6)y=x3lnx;(7)y=exsinx;
设函数y=f(x)具有二阶导数,且f’(x)>0,f(x)>0,△x为自变量x在点x0处的增量,△y与dy分别为f(x)在点x0处对应的增量与微分,若△x>0,则
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.证明B可逆;
将一枚硬币独立地掷两次,引进事件:A1={掷第一次出现正面},A2={掷第二次出现正面},A3={正、反面各出现一次},A4{正面出现两次},则事件().
随机试题
A.太冲、太溪B.合谷、丰隆C.足三里、气海D.太溪、风池中风中经络中属气虚血瘀者除选主穴外还可配用
亚里士多德认为悲剧韵作用在于【】
胎盘剥离征象不包括
某患者经常毁坏红颜色的物品如电话机、衣服等,谓“红色要我死亡”,此症为()
美国一家以生产服装为主的知名公司,为开拓国际市场,方便业务往来,现拟在我国的几个大城市各设一个办事处。下列表述中符合我国公司法的规定的一项是________。
高层建筑的雨水管一般要用()。
下列关于保修义务的承担和维修的经济责任承担应当遵循的处理原则的说法中,正确的有()。
不同部门或人群对教师职业有不同的期待,使得教师有时候左右为难,这是()
中共中央、国务院印发的《国家创新驱动发展战略纲要》提出,到2020年我国进入()。
December20th1998DearEditor,TheAmericanrailroadindustry’scommitmenttosafetyisdemonstratedbyasteadilydeclinin
最新回复
(
0
)