首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)∈C[a,b],在(a,b)内二阶可导,且f"(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫abφ(x)dx=1. 证明:∫abf(x)φ(x)dx≥f[∫abxφ(x)dx].
设f(x)∈C[a,b],在(a,b)内二阶可导,且f"(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫abφ(x)dx=1. 证明:∫abf(x)φ(x)dx≥f[∫abxφ(x)dx].
admin
2016-10-13
47
问题
设f(x)∈C[a,b],在(a,b)内二阶可导,且f"(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫
a
b
φ(x)dx=1.
证明:∫
a
b
f(x)φ(x)dx≥f[∫
a
b
xφ(x)dx].
选项
答案
因为f"(x)≥0,所以有f(x)≥f(x
0
)+f’(x
0
)(x—x
0
). 取x
0
=∫
a
b
xφ(x)dx,因为φ(x)≥0,所以aφ(x)≤xφ(x)≤bφ(x),又∫
a
b
φ(x)dx=1,于是有a≤∫
a
b
xφ(x)dx=x
0
≤b.把x
0
=∫
a
b
xφ(x)dx代入f(x)≥f(x
0
)+f’(x
0
)(x—x
0
)中,再由φ(x)≥0,得 f(x)φ(x)≥f(x
0
)φ(x)+f’(x
0
)[xφ(x)一x
0
φ(x)], 上述不等式两边再在区间[a,b]上积分,得∫
a
b
f(x)φ(x)dx≥f[∫
a
b
xφ(x)dx].
解析
转载请注明原文地址:https://kaotiyun.com/show/x6u4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 B
设f(x),g(x)在[a,b]上连续,(a,b)内可导,证明存在ε∈(a,b)使得[f(b)-f(a)]gˊ(ε)=[g(b)-g(a)]fˊ(ε)
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:若α,β线性相关,则秩r(A)
设n阶矩阵A非奇异(n≥2),A*是A的伴随矩阵,则
已知(1)计算行列式|A|.(2)当实数α为何值时,方程组Ax=β有无穷多解,并求其通解.
因为方程组(I)(Ⅱ)有公共解,[*]
设在区间[a,b]上f(x)>0,f’(x)
设曲线L:x2+y2+x+y=0,取逆时针方向,证明:I=∫L一ysinx2dx+xcosy2dy<
随机试题
在国际单位制中,压力的单位是()。
A、 B、 C、 D、 D
《中华人民共和国节约能源法》中“淘汰制度”规定的淘汰对象包括()。
关于木材的受力性能,正确的是()。
下列对捶面防护的适用范围叙述正确的是()。
位于市区的某国有工业企业利用厂区空地建造写字楼,2018年发生的相关业务如下:(1)按照国家有关规定补交土地出让金4000万元,缴纳相关税费160万元。(2)写字楼开发成本3000万元,其中装修费用500万元。(3)
青少年社会工作的()层面,一般指家庭和小组层面的社会工作,即针对青少年家庭,以及有相同需要或背景的青少年群体而开展的社会工作服务。
“举一反三”是负迁移。()
表示成如下浮点数格式,用十六进制表示正确的是:(1)表示尾数:原码、小数、24位,包括一个隐藏位;阶码:移码、整数、7位:阶码和尾数均不包括符号位,基值均为2。(2)表示尾数:基值为16、原码、小数、6位;阶码:基值为2、移码、整数、6位;阶码和尾数均不包
PaulaJones’caseagainstBillClintonisnow,forallpossiblepoliticalconsequencesandcapacityformediasensation,afairy
最新回复
(
0
)