首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A,B为n阶矩阵且r(A)+r(B)<n.证明:方程组AX=0与BX=0有公共的非零解.
A,B为n阶矩阵且r(A)+r(B)<n.证明:方程组AX=0与BX=0有公共的非零解.
admin
2016-10-13
71
问题
A,B为n阶矩阵且r(A)+r(B)<n.证明:方程组AX=0与BX=0有公共的非零解.
选项
答案
方程组[*]=0的解即为方程组AX=0与BX=0的公共解. 因为[*]=0有非零解,故方程组AX=0与BX=0有公共的非零解.
解析
转载请注明原文地址:https://kaotiyun.com/show/y6u4777K
0
考研数学一
相关试题推荐
设非负连续型随机变量X服从指数分布,证明对任意实数r和S,有P{X>r+s|X>s}=P{X>r}.
设A是n(n≥3)阶矩阵,满足A3=O,则下列方程组中有惟一零解的是().
(1)设f(x)在R上有定义,证明:y=f(x)的图形关于直线x=1对称的充要条件是f(x)满足f(x+1)=f(1-x),x∈R(2)设f(x)在R上有定义,且y=f(x)的图形关于直线x=1与直线x=2对称,证明:f(x)是周期函数,并求f(x
已知函数f(x,y)在点(0,0)某邻域内连续,且则
设向量组α1,α2,α3线性无关,问常数a,b,c满足什么条件时,aα1-α2,bα2-α3,cα3-α1线性相关?
曲面x2+2y2+3z2=21在点(1,-2,2)的法线方程为____________.
设α1,α2,α3是四元非齐次方程组AX=b的三个解向量。且秩r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=().
设y=ex(C1sinx+C2cosx)(C1,C2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为__________.
(Ⅰ)已知由参数方程确定了可导函数y=f(x),求证:x=0是y=f(x)的极大值点.(Ⅱ)设F(x,y)在(x0,y0)某邻域有连续的二阶偏导数,且F(x0,y0)=(x0,y0=0,(x0,y0>0,(x0,y0)
设f(x)在x=0的某邻域内二阶连续可导,且.证明:级数绝对收敛.
随机试题
计算机系统由________组成。
外毒素的特性不包括
牙周细菌的致病机制是
打桩顺序是否合理,直接影响打桩进度和施工质量,在确定打桩顺序时要综合考虑的因素有下列几方面,表述中错误的是()。
当遇到()种情况时,应该停止盾构掘进,并采取措施。
如果统一发票式样不能满足业务需要,也可以自行设计本单位的发票式样,请简述代理自制发票操作要点。
6年分期付款购物,每年年初付款500元,设银行利率为10%,该项分期付款相当于现在一次现金支付的购价是()元。
你和同事一起去执行任务。在执行前你提出了工作安排。但同事提出了不同意见.后来在具体执行中证明你的安排不切合实际。在这种情况下,你该怎么办?
[2001年MBA真题]科学研究表明,大量吃鱼可以大大减少患心脏病的危险,这里起作用的关键因素是在鱼油中所含的丰富的“奥米加一3”脂肪酸。因此,经常服用保健品“奥米加一3”脂肪酸胶囊将大大有助于你预防心脏病。以下哪项如果为真,最能削弱题干的论证?
下列关于Java语言中线程的叙述中,正确的是
最新回复
(
0
)